
2023 No. 147 

 
Using Machine Learning to Develop Occupational 

Interest Profiles and High-Point Codes for the 
O*NET System 

 
 
 

Prepared  
for: 

National Center for O*NET Development  
313 Chapanoke Road, Suite 130  
Raleigh, NC 27603 

Prepared  
under: 

Subcontract Number  
(through RTI International):  
1-312-0207142--41224L 

Authors: Dan J. Putka, HumRRO 
Jeffrey A. Dahlke, HumRRO 
Maura I. Burke, HumRRO 
James Rounds, University of Illinois 
Phil Lewis, National Center for O*NET Development 

Date:  
 

November 7, 2023 
 

 



 

Using Machine Learning to Develop Occupational Interest Profiles i 

Using Machine Learning to Develop Occupational Interest Profiles and 
High-Point Codes for the O*NET System 

Table of Contents 

Introduction ................................................................................................................................... 1 

Updating Occupational Interest Profiles and High-Point Codes .............................................. 2 

Overview of Development and Evaluation Approach .............................................................. 3 

Step 1: Acquiring and Preparing Data for Initial Modeling Work ................................................... 5 

Constructing a Combined 2008-2013 Dataset for Initial Modeling .......................................... 6 

Step 2: Developing and Evaluating Initial RIASEC Prediction Models ......................................... 9 

Creating Inputs/Features for Prediction Models ...................................................................... 9 
Bag-of-Words (BoW) Features ........................................................................................ 10 
SBERT Embeddings ....................................................................................................... 10 
Cosines Between SBERT Embeddings for O*NET-SOCs and Interests ........................ 11 

Initial Models ......................................................................................................................... 12 
Specifications for Initial Models ....................................................................................... 12 
Sample Splitting .............................................................................................................. 14 
Hyperparameter Tuning .................................................................................................. 14 
Cross-Validation and Final Initial Model Fitting ............................................................... 17 
Evaluation of Initial Models ............................................................................................. 17 

First-Stage Ensembles .......................................................................................................... 20 
First-Stage Ensemble Training and Cross-Validation Process ....................................... 21 
Evaluation of First-Stage Ensembles .............................................................................. 21 

Second-Stage Ensembles ..................................................................................................... 27 

Final Consolidation of Step 2 Modeling Results .................................................................... 30 

Step 3: Generating Preliminary OIPs and High-Point Codes ...................................................... 31 

Step 4: Identifying Occupations for Inclusion in Analyst-Expert Rating Data Collections ........... 32 

Step 5: Collecting and Evaluating O*NET Analyst and Expert RIASEC Ratings ........................ 36 

Overview of Rater Recruitment and Training ........................................................................ 36 
Rater Training ................................................................................................................. 36 

Overview of Rating Process .................................................................................................. 37 

Rating Data Review and Cleaning ........................................................................................ 39 

Evaluation of Ratings ............................................................................................................ 40 
Basic Descriptives and Mean Differences ....................................................................... 40 
Reliability and Agreement ............................................................................................... 41 
Convergence among Rater Types .................................................................................. 43 



 

Using Machine Learning to Develop Occupational Interest Profiles ii 

Step 6: Refining and Evaluating Final RIASEC Prediction Models for Future Use ..................... 44 

Identifying a Baseline Model that Balances Prediction and Practical Considerations ........... 44 

Developing Models that Consider AT, DWA, and IWA Features .......................................... 45 
Modeling Procedure ........................................................................................................ 45 
Sample Splitting, Hyperparameter Tuning, and Cross-Validation ................................... 46 
Residual Model Specifications ........................................................................................ 49 
Residual Ensemble Specifications .................................................................................. 49 
Cross-Validation and Final Model Fitting ........................................................................ 50 

Evaluation of Residual Models and Ensemble ...................................................................... 50 
Evaluation of Final RIASEC Predictions: Ensemble 1 + Residual Model 1 ..................... 52 

Additional Evaluations for Final RIASEC Prediction Models ................................................. 54 

Step 7: Finalizing OIPs and High-Point Codes for O*NET 28.1 .................................................. 63 

Results of Review ................................................................................................................. 63 
Predicted vs. Expert Ratings ........................................................................................... 63 
Predicted vs. Published Ratings ..................................................................................... 64 
Summary ......................................................................................................................... 64 

Guidance for Updating RIASEC Ratings and High-Point Codes in Future Versions of the O*NET 
Database ..................................................................................................................................... 65 

Timing of Future Interest Rating and High-Point Code Updates ........................................... 66 

Conclusions and Future Directions ............................................................................................. 67 

References .................................................................................................................................. 68 

Appendix A: RIASEC Dimension Descriptions from the O*NET Content Model......................... 71 

Appendix B: 2008-2013 Interest Re-Rating Instructions ............................................................. 72 

Appendix C: Best Performing Regression Method and Hyperparameter Values by Model and 
Ensemble .................................................................................................................................... 73 

Appendix D: SME Interest Rating Materials ................................................................................ 75 

RIASEC Familiarization Exercise Instructions ...................................................................... 75 

Rating Instructions and Rating Sheet .................................................................................... 76 
Example Interest Rating Sheet ....................................................................................... 77 

Appendix E: Elastic Net Regression Hyperparameter Values by Residual Model ...................... 78 

Appendix F: Final RIASEC Model Residuals by O*NET Job Family and Job Zone .................... 79 
  



 

Using Machine Learning to Develop Occupational Interest Profiles iii 

Table of Contents (Continued) 
 
 

List of Tables 
 
Table 2.1. Summary of Models Trained for Each RIASEC Dimension ....................................... 13 
Table 2.2. Percentage of Data Included in the Training Data, Training Folds, and Test 

Data .............................................................................................................................. 15 
Table 2.3. Sample Sizes for Job Families Across 2008-2013 Dataset Segments ...................... 16 
Table 2.4. Cross-Validated RMSE Results for Best Specifications for Initial 14 Models for 

Each RIASEC Dimension ............................................................................................. 18 
Table 2.5. Cross-Validated Multiple R Results for Best Specifications for Initial 14 

Models for Each RIASEC Dimension ........................................................................... 19 
Table 2.6. Comparison of Initial Model 5 Performance to Existing Benchmarks ........................ 20 
Table 2.7. Summary of Ensembles Trained for Each RIASEC Dimension ................................. 21 
Table 2.8. Cross-Validated RMSE Results for Best Specifications for 18 First-Stage 

Ensembles for Each RIASEC Dimension ..................................................................... 22 
Table 2.9. Cross-Validated Multiple R Results for Best Specifications for 18 First-Stage 

Ensembles for Each RIASEC Dimension ..................................................................... 23 
Table 2.10. Summary of Correlations Among Predictions from Initial Models Used as 

Features in First-Stage Ensembles .............................................................................. 24 
Table 2.11. Regression Coefficients and Relative Importance Estimates for Best First-

Stage Ensembles for Each RIASEC Dimension for O*NET-SOCs without 
KSA/GWA Data ............................................................................................................ 26 

Table 2.12. Regression Coefficients and Relative Importance Estimates for Best First-
Stage Ensembles for Each RIASEC Dimension for O*NET-SOCs with 
KSA/GWA Data ............................................................................................................ 26 

Table 2.13. Cross-Validated RMSE Results for Second-Stage Ensembles ............................... 28 
Table 2.14. Cross-Validated Multiple R Results for Second-Stage Ensembles .......................... 28 
Table 2.15. Comparison of Best First-Stage and Second-Stage Ensembles to Existing 

Benchmarks ................................................................................................................. 28 
Table 2.16. Regression Coefficients and Relative Importance Estimates for Second-

Stage Ensembles ......................................................................................................... 29 
Table 2.17. Cross-Validity Estimates for Best Performing Ensembles ....................................... 30 
Table 4.1. Inclusion Criteria for O*NET-SOC Data Level Occupations in Analyst/Expert 

Data Collection ............................................................................................................. 32 
Table 4.1. (Continued) ................................................................................................................ 33 
Table 4.2. Representativeness of Occupations Selected for Inclusion in the 

Analyst/Expert Data Collection with Respect to O*NET Job Zone ............................... 34 
Table 4.3. Representativeness of Occupations Selected for Inclusion in the 

Analyst/Expert Data Collection with Respect to Job Family ......................................... 35 
Table 5.1. Descriptive Statistics for RIASEC Dimensions by Rater Type ................................... 40 
Table 5.2. Within-Occupation Standardized Mean Differences between Rater Types ............... 41 
Table 5.3. Interrater Reliability and Agreement for RIASEC Dimensions by Rater Type ............ 42 
Table 5.4. Reliability and Agreement for RIASEC Profiles by Rater Type .................................. 42 



 

Using Machine Learning to Develop Occupational Interest Profiles iv 

Table 5.5. Multitrait-Multimethod Correlations for RIASEC Dimensions by Rater Type ............. 43 
Table 6.1. Test Set Cross-Validated R for Ensemble 1 vs. Best Ensembles from Step 2 

for Each RIASEC Dimension ........................................................................................ 45 
Table 6.2. Five-Fold Nested Cross-Validation Design ................................................................ 47 
Table 6.3. Sample Breakdown for 5-Fold Nested Cross-Validation ............................................ 47 
Table 6.4. Sample Sizes for Job Families Across Data Segments ............................................. 48 
Table 6.5. Summary of Residual Models to be Trained for Each RIASEC Dimension ............... 49 
Table 6.6. Cross-Validated RMSE Results for Residual Models for Each RIASEC 

Dimension .................................................................................................................... 51 
Table 6.7. Cross-Validated Multiple R Results for Residual Models for Each RIASEC 

Dimension .................................................................................................................... 51 
Table 6.8. Cross-Validated RMSE Results for Ensemble 1 + Residual Prediction Models ........ 53 
Table 6.9. Cross-Validated Multiple R Results for Ensemble 1 + Residual Prediction 

Models .......................................................................................................................... 53 
Table 6.10. Comparison of Final RIASEC Models’ Performance to Existing Benchmarks ......... 54 
Table 6.11. Distribution of Within-Occupation RIASEC Profile Correlations and ICCs ............... 55 
Table 6.12. Agreement on High-Point Codes ............................................................................. 56 
Table 6.13. Multitrait-Multimethod Correlations for RIASEC Dimensions by Rating 

Source: Stacked Predictions for Test Set Holdouts ..................................................... 57 
Table 6.14. Multitrait-Multimethod Correlations for RIASEC Dimensions by Rating 

Source: Predictions for Full Sample ............................................................................. 58 
Table 6.15. RIASEC Intercorrelations based on New Predicted RIASEC Ratings and 

Published O*NET 27.3 RIASEC Ratings ...................................................................... 59 
Table 6.16. Percentage of Variance in Prediction Residuals Attributable to Job Family 

vs. Occupation ............................................................................................................. 61 
Table 6.17. Percentage of Variance in Prediction Residuals Attributable to Job Zone vs. 

Occupation ................................................................................................................... 61 
Table A.1. RIASEC Dimension Descriptions from the O*NET Content Model ........................... 71 
Table C.1. Best-Performing Machine Learning Methods and Hyperparameter Values for 

Initial Models ................................................................................................................ 73 
Table C.2. Best-Performing Machine Learning Methods and Hyperparameter Values for 

First-Stage Ensemble Models ...................................................................................... 74 
Table E.1. Elastic Net Regression Hyperparameters by Residual Model ................................... 78 
Table F.1. Raw Residual Summary by Job Family ..................................................................... 79 
Table F.2. Absolute Residual Summary by Job Family .............................................................. 80 
Table F.3. Raw Residual Summary by Job Zone ....................................................................... 81 
Table F.4. Absolute Residual Summary by Job Zone ................................................................. 81 
 
 
  



 

Using Machine Learning to Develop Occupational Interest Profiles v 

Table of Contents (Continued) 
 
 

List of Figures 
 
Figure 5.1. O*NET RIASEC Dimension Rating Scale ................................................................. 37 
Figure 6.1. Multidimensional Scaling and Constrained (Circular MDS) Solution Plots for 

Predicted Ratings and Published O*NET 27.3 Ratings ................................................ 60 
 
 



 

Using Machine Learning to Develop Occupational Interest Profiles 1 

Using Machine Learning to Develop Occupational Interest Profiles and 
High-Point Codes for the O*NET System 

Introduction 

The Occupational Information Network (O*NET) is a comprehensive system developed by the 
U.S. Department of Labor that provides information for over 900 occupations within the U.S. 
economy. This information is maintained in a database (National Center for O*NET 
Development, 2023). To keep the database current, the National Center for O*NET 
Development (hereafter referred to as “the Center”) is involved in a continual data collection 
process aimed at identifying and maintaining current information on the characteristics of 
workers and occupations. The purpose of this project was to develop updated Occupational 
Interest Profiles (OIPs) and high-point codes for the 923 data-level occupations included within 
the O*NET-SOC 2019 taxonomy (Gregory et al., 2019) and to offer a streamlined process for 
future updating of interest data in the O*NET System. 

Vocational interest information is an important part of the O*NET Program’s support of 
educational planning, career exploration, career guidance, job search, and organizational 
placement (Rounds et al., 2021). The O*NET Content Model defines interest information 
compatible with Holland’s RIASEC model of personality types and work environments (Holland, 
1997) and was recently expanded to include basic interests related to each RIASEC dimension 
(Rounds et al., 2023). The RIASEC model serves as a foundation for interest information in the 
O*NET System due to its extensive use in applied settings and research. The model is familiar 
to and preferred by vocational counselors and employment program professionals/directors 
(e.g., One Stop Centers, Employment Security Offices, Workforce Development Centers). The 
move towards and emphasis on self-assessment in career exploration also necessitated the 
selection of a model that was easy for end users to understand and use, and the RIASEC model 
fulfills that need. 

Within the RIASEC model, six interest categories are used to describe the work environment of 
occupations: Realistic, Investigative, Artistic, Social, Enterprising, and Conventional (i.e., 
RIASEC). Table A.1 in Appendix A provides descriptions of each RIASEC interest category as 
described in the O*NET Content Model. Corresponding OIPs and high-point codes are 
published within the O*NET database and O*NET web services. An OIP consists of six 
numerical scores indicating how descriptive each RIASEC dimension is of an O*NET-SOC 
occupation. In addition, a profile of one to three high-point codes indicates which RIASEC 
dimensions are most descriptive of an O*NET-SOC occupation. The number of high-point codes 
offered for an O*NET occupation depends on the number that meets a minimum degree of 
descriptiveness for the O*NET-SOC occupation. Details on how OIPs and high-point codes 
have historically been developed for occupations in O*NET are detailed in Rounds et al. (1999), 
Rounds et al. (2008), and Rounds et al. (2013). Interest data for O*NET-SOC occupations is 
disseminated through various O*NET websites (O*NET OnLine; My Next Move; My Next Move 
for Veterans; Mi Proximo Paso), available through the O*NET database and web services 
(National Center for O*NET Development, 2023), and play a critical role in facilitating career 
exploration processes in conjunction with O*NET’s Interest Profiler assessment to identify 
O*NET-SOC occupations that may align with an individual’s vocational interests (Gregory & 
Lewis, 2016; Rounds et al., 2021). 

https://www.onetcenter.org/database.html
https://www.onetcenter.org/database.html
https://www.onetcenter.org/reports/Taxonomy2019.html
https://www.onetcenter.org/reports/IP_Manual.html
https://www.onetcenter.org/reports/Voc_Interests.html
https://services.onetcenter.org/
https://www.onetcenter.org/reports/SecondOIP_Summary.html
https://www.onetcenter.org/reports/OIP_NewEmerging.html
https://www.onetonline.org/
https://www.mynextmove.org/
https://www.mynextmove.org/vets/
https://www.mynextmove.org/vets/
https://www.miproximopaso.org/
https://www.onetcenter.org/database.html#overview
https://www.onetcenter.org/database.html
https://www.onetcenter.org/IP.html
https://www.onetcenter.org/reports/Mini-IP_Linking.html
https://www.onetcenter.org/reports/Mini-IP_Linking.html
https://www.onetcenter.org/reports/IP_Manual.html
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The O*NET Program’s recent transition to the O*NET-SOC 2019 taxonomy structure 
necessitates the development and dissemination of Interest Profiles (OIPs) and high-point 
codes for the 923 data-level occupations included in that taxonomy. Additionally, the last major 
updates to interest data in the O*NET database occurred in 2008 and 2013 (Rounds et al., 
2008; Rounds et al., 2013). Thus, there is a need to update the interest data in the O*NET 
database to fully cover data-level occupations in the O*NET-SOC 2019 taxonomy and account 
for changes that may have occurred in occupations over the past decade. 

Updating Occupational Interest Profiles and High-Point Codes 

The current effort aimed to develop updated OIPs and high-point codes for the 923 data-level 
occupations included within the O*NET-SOC 2019 taxonomy and offer a streamlined process 
for future updating of interest data in O*NET. There are at least three approaches to developing 
OIPs for occupations, including (a) incumbent, (b) empirical, and (c) judgment-based 
approaches (Rounds et al., 1999). The incumbent approach involves assessing the interests of 
occupational incumbents and aggregating them to the occupation level.1 The empirical 
approach involves using occupation-level data to make predictions about how descriptive an 
interest is of an occupation’s work environment. Lastly, the judgment approach involves asking 
subject matter experts to provide judgments of how descriptive an interest is of an occupation’s 
work environment.  

There have been three major updates to the interest data in O*NET over time. The original OIP 
development work in 1999 explored and compared the use of one type of empirical approach 
versus a judgment approach to populating OIPs and high-point code data (Rounds et al., 1999). 
The empirical approach examined in the 1999 effort was found to have limited utility beyond 
identifying the most relevant interest for an occupation (i.e., the first high-point code). This led to 
the development of an approach using direct ratings of occupations by trained raters (i.e., a 
judgment approach). The raters made judgments based on standardized stimulus materials 
available from O*NET data at the time, which included occupation titles, descriptions, and core 
tasks. A subject matter expert (SME) then refined the high-point codes as needed following the 
rating exercise. The quality of the resulting data was supported with both structural and external 
validity evidence (see Rounds et al., 1999 for a summary). The judgment-based approach was 
also used in the 2008 and 2013 updates to OIPs and associated high-point codes (Rounds et 
al., 2008; Rounds et al., 2013).   

While the previous judgment-based approaches produced high-quality OIPs and high-point 
codes, the resource-intensive nature of relying on trained raters leads to challenges in 
maintaining the currency of the database over time. Additionally, since the 1999 evaluation of 
the empirical approach to generating OIPs, there have been several developments that make 
empirical approaches far more viable options for O*NET to consider, most notably:  

• The emergence of high-quality criterion data on which to train RIASEC prediction models 
(i.e., numeric RIASEC ratings for O*NET-SOCs provided by trained human raters; e.g., 
Rounds et al., 2008; Rounds et al., 2013). 

 
1 Though earlier championed by Holland (1997), the incumbent approach is problematic in that it does not provide a 
direct measure of how characteristic or descriptive each interest is of an occupation’s work environment, but rather 
the interests of the individuals who work in an occupation. These represent two different targets of measurement (i.e., 
characteristics of individuals vs. characteristics of work in occupations). The purpose of the OIPs in O*NET is to 
provide interest profiles for occupations based on the work performed within those occupations, rather than the 
people who work in them. 

https://www.onetcenter.org/reports/SecondOIP_Summary.html
https://www.onetcenter.org/reports/SecondOIP_Summary.html
https://www.onetcenter.org/reports/OIP_NewEmerging.html
https://www.onetcenter.org/reports/OIP.html
https://www.onetcenter.org/reports/OIP.html
https://www.onetcenter.org/reports/OIP.html
https://www.onetcenter.org/reports/SecondOIP_Summary.html
https://www.onetcenter.org/reports/SecondOIP_Summary.html
https://www.onetcenter.org/reports/OIP_NewEmerging.html
https://www.onetcenter.org/reports/SecondOIP_Summary.html
https://www.onetcenter.org/reports/OIP_NewEmerging.html
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• The emergence of methods for quantifying occupation text data (e.g., descriptions, task 
statements) that bear conceptual relevance to RIASEC dimensions and that could be 
used as inputs to predictive models (Dahlke & Putka, 2022; Dahlke et al., 2022; Putka et 
al., 2023).  

• The emergence of supervised learning methods that can generate more generalizable 
predictions in the face of limited data to train and cross-validate models (e.g., regularized 
regression models that help avoid capitalization on chance and yield higher levels of 
cross-validity than traditional modeling methods; James et al. 2021).2  

Overview of Development and Evaluation Approach 

Given the objectives of this effort and lessons learned from past research, our technical 
approach to updating OIPs and high-point codes reflects a combination of empirical and 
judgment-based approaches and is based on the following assumptions:  

• Interest ratings for occupations made by trained human raters are of high quality. This is 
evidenced by the analysis presented in past O*NET reports (Rounds et al., 1999; 
Rounds et al., 2008; Rounds et al., 2013). 

• There are strong conceptual relations between what people do on a job (as captured in 
occupation descriptions and task statement lists) and the RIASEC interests that best 
describe work in that job. These conceptual relations manifest in empirical relations 
between (a) O*NET-SOC descriptions and tasks and (b) human ratings of RIASEC 
dimensions that have magnitudes rivaling the level of interrater reliability observed 
among trained human raters (Dahlke & Putka, 2022; Putka et al., 2023).  

• It is possible to generate accurate RIASEC interest ratings (and associated high-point 
codes) based on predictive models that use inputs from other parts of the O*NET 
Content Model without engaging in an extensive data collection with trained human 
raters (Dahlke & Putka, 2022; Putka et al., 2023).  

• The aforementioned predictive models can afford the Center with a semi-automated 
means for updating OIPs and associated high-point codes over time as O*NET-SOCs 
change and new O*NET-SOCs emerge.  

 
With these assumptions as a foundation, we engaged in a multi-step process to develop and 
evaluate updated OIPs and high-point codes for the 923 data-level occupations included within 
the O*NET-SOC 2019 taxonomy. These steps included: 

• Step 1: Acquiring and Preparing Data for Initial Modeling Work  

• Step 2: Developing and Evaluating Initial RIASEC Prediction Models 

• Step 3: Generating Preliminary OIPs and High-Point Codes 

• Step 4: Identifying Occupations for Inclusion in Analyst-Expert Rating Data Collections 

• Step 5: Collecting and Evaluating Analyst and Expert RIASEC Ratings  

 
2 Supervised learning can be viewed as a falling within the broader domain of statistical or machine learning, with a 
focus on developing and validating models for predicting an outcome or criterion of interest based on a set of inputs. 

https://www.onetcenter.org/reports/Related_2022.html
https://www.onetcenter.org/reports/OIP.html
https://www.onetcenter.org/reports/SecondOIP_Summary.html
https://www.onetcenter.org/reports/OIP_NewEmerging.html
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• Step 6: Refining and Evaluating Final RIASEC Prediction Models for Future Use 

• Step 7: Finalizing OIPs and High-Point Codes for publication in the O*NET 28.1 
database 

 
We provide details on each step in the sections that follow. Lastly, we conclude this report with 
guidance for updating OIPs and high-point codes in future versions of the O*NET database 
based on the prediction models developed herein. 

  



 

Using Machine Learning to Develop Occupational Interest Profiles 5 

Step 1: Acquiring and Preparing Data for Initial Modeling Work  

To develop and evaluate models of how descriptive each RIASEC dimension is of an 
occupation, it is ideal to have samples of occupations for which high-quality RIASEC ratings 
already exist. Fortunately, in the case of O*NET, such samples are available from the 2008 and 
2013 OIP development efforts (Rounds et al., 2008; Rounds et al., 2013).3 The 2008 and 2013 
development efforts provided a critical foundation for developing and evaluating RIASEC 
prediction models for occupations in the O*NET-SOC 2019 taxonomy. Specifically, we used 
these datasets to better understand which types of prediction models tend to best align with 
RIASEC ratings from trained human raters.  

As a first step, we acquired and prepared the following data from various O*NET databases to 
support the modeling work subsequently described under Step 24: 

• Occupation descriptions, occupation titles, task statements,5 knowledge, skill, and ability 
(KSA) importance ratings, generalized work activity importance ratings, RIASEC interest 
ratings, and RIASEC high-point codes for: 
- The 812 occupations in the O*NET 13.0 Database (June 2008) with interest data 

(i.e., the database underlying the 2008 version of the O*NET RIASEC data).  
- The 908 occupations in the O*NET 14.0 Database (June 2009) with interest data 

(i.e., the database underlying the 2009 version of the O*NET RIASEC data).  
- The 974 occupations in the O*NET 18.0 Database (July 2013) with interest data 

(i.e., the database underlying the 2013 version of the O*NET RIASEC data). 
 
We also obtained the following data from Dr. James Rounds, who led the 2008 and 2013 OIP 
development efforts: 

• Disaggregated RIASEC interest ratings from individual raters underlying the 2008, 2009, 
and 2013 versions of the O*NET RIASEC data. 

 
Lastly, we obtained text for RIASEC and basic interest items that we subsequently used in our 
modeling process (detailed in Step 2). 

• RIASEC items from O*NET’s Interest Profiler (IP) Short Form measure (Rounds et al., 
2010, 2021). 

• Basic interest items from the CABIN measure (Su et al., 2019) and “Illustrative Activities” 
for basic interests developed for the 2023 expansion of the interest domain of the 
O*NET Content Model (Rounds et al., 2023).  

 

 
3 Note, though human-based ratings from the 1999 OIP and high-point code development work described by Rounds 
et al. (1999) are available through ONET 3.0 Transitional Database (published in August 2000), those ratings were 
made on occupational units that pre-date the O*NET-SOC taxonomic structure and as such were not considered for 
this effort. 
4 Later in our research effort, we also examined other text data that became available in later versions of the O*NET 
database after O*NET 18.0 (e.g., alternate titles, detailed work activities, intermediate work activities). Under Step 6, 
we explain how we used these additional types of text to further refine our initial models. 
5 We used core task statements for occupations that differentiated between core and supplemental tasks, and all 
tasks for occupations that did not make that differentiation. 

https://www.onetcenter.org/reports/SecondOIP_Summary.html
https://www.onetcenter.org/reports/OIP_NewEmerging.html
http://www.onetcenter.org/reports/IPSF_Psychometric.html
http://www.onetcenter.org/reports/IPSF_Psychometric.html
https://www.onetcenter.org/reports/IP_Manual.html
https://www.onetcenter.org/reports/Voc_Interests.html
https://www.onetcenter.org/reports/OIP.html
https://www.onetcenter.org/reports/OIP.html
https://www.onetcenter.org/db_transitional.html
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Constructing a Combined 2008-2013 Dataset for Initial Modeling 

With the data above, we first constructed a combined dataset with information from the three 
O*NET databases noted (13.0, 14.0, and 18.0). We subsequently refer to this as the “2008-
2013 Dataset.”  

The 2008-2013 Dataset consists of the 974 O*NET-SOCs with interest data from O*NET 18.0, 
but the inputs tied to those occupations (i.e., occupation descriptions, occupation titles, task 
statements, KSA importance ratings, generalized work activity importance ratings) were drawn 
from either the O*NET 13.0, 14,0, or 18.0 database depending on when in time the interest data 
for that occupation was obtained from trained raters as part of previous OIP development 
efforts. For example, if the interest ratings for an occupation reflected ratings gathered for 
O*NET 13.0, then we use input data from O*NET 13.0 for that occupation, as opposed to what 
inputs were provided for that occupation in O*NET 18.0. This ensured the inputs and interest 
ratings were in close temporal alignment; that is, the inputs largely reflected the state of the 
occupation as described by O*NET at the time the interest ratings were first published. 

A challenge in aligning the data across different versions of the O*NET database noted above is 
that they were not all based on the same O*NET-SOC taxonomy. Specifically, O*NET 18.0 was 
based on O*NET-SOC 2010, O*NET 14.0 was based on O*NET-SOC 2009, and O*NET 13.0 
was based on O*NET-SOC 2006.  

To address this matter, we used the O*NET-SOC 2010 as the foundation for the 2008-2013 
Dataset. The rationale was that the O*NET-SOC 2010 taxonomy provided the basis for O*NET 
18.0, which afforded the latest and most complete set of interest data among the databases 
examined. Next, using published O*NET crosswalks available through the O*NET Resource 
Center (O*NET-SOC Taxonomy), the O*NET-SOC 2010 codes in O*NET 18.0 were linked to 
O*NET-SOCs in the earlier database versions examined (i.e., O*NET 14.0 and 13.0). We then 
used those linkages to pull in occupational information (e.g., occupational descriptions, tasks) 
from the database that was most proximal to the date that interest occupation was updated for 
that occupation as documented in O*NET 18.0.  

For example, if an occupation in O*NET 18.0 had an interest publication date of 2013, then we 
simply used occupation information that was present in O*NET 18.0 for the 2008-2013 Dataset 
(n = 83). If an occupation in O*NET 18.0 had an interest publication date of 2009, then we 
would crosswalk the O*NET-SOC 2010 with O*NET-SOC 2009 and merge in occupational 
information for that occupation from O*NET 14.0 for the 2008-2013 Dataset (n = 95). Lastly, if 
an occupation in O*NET 18.0 had an interest publication date of 2008, then we would crosswalk 
the O*NET-SOC 2010 with O*NET-SOC 2006 and merge in occupational information for that 
occupation from O*NET 13.0 for the 2008-2013 Dataset (n = 796). 

Given the focus of the current effort on using RIASEC ratings from the 2008-2013 Dataset as 
our primary criteria for building predictive models, we took the added step of attempting to 
ensure the quality of those criteria (i.e., the judgment-based RIASEC ratings). As such, we 
revisited the original, disaggregated RIASEC ratings (i.e., RIASEC ratings made by individual 
trained raters) and examined them for disagreement for each occupation. The original 
judgment-based ratings for each RIASEC dimension simply reflected averages of ratings from 
trained individual raters, with no consideration of the level of agreement among those raters for 
a given occupation. This could result in a source of inaccuracy in the ratings as an outlying rater 
could readily skew the average rating for an occupation. HumRRO obtained disaggregated 
interest rating information from Dr. Rounds, which informed the original development of OIPs for 

https://www.onetcenter.org/taxonomy.html
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each of the O*NET 18.0, 14.0, and 13.0 releases. Specifically, separate datasets containing 
individual-level interest ratings for a given release were shared, allowing us to merge that 
information with the 2008-2013 Dataset based on the crosswalks described above. 

Using the data above, we developed criteria for flagging the 5,844 occupation-RIASEC 
combinations (974 occupations x 6 RIASEC dimensions) where disagreement among the three 
trained raters who provided the original ratings was considered meaningful. In consultation with 
Dr. Round’s and the Center, it was agreed that occupations would be flagged based on the 
following rules: 

• Rule 1: Range across raters was greater than or equal to four (on a one-to-seven rating 
scale) AND if two of the raters were less than or equal to one rating point away from 
each other. 143 out of 5,844 (2.4.%) of occupation-RIASEC combinations met this rule. 
The occupation-RIASEC combinations that met this rule spanned 125 of the 974 
(12.8%) occupations in the 2008-2013 Dataset. 

• Rule 2: Range across raters was greater than or equal to four AND if two of the raters 
were greater than one rating point away from each other. 65 out of 5,844 (1.1%) of 
occupation-RIASEC combinations met this rule. The occupation-RIASEC combinations 
that met this rule spanned 61 of the 974 (6.3%) occupations in the 2008-2013 Dataset. 

• Rule 3: Range across raters was equal to three AND if two of the raters gave the same 
rating. 146 out of 5,844 (2.5%) of occupation-RIASEC combinations met this rule. The 
occupation-RIASEC combinations that met this rule spanned 134 of the 974 (13.7%) 
occupations in the 2008-2013 Dataset. 

 
Based on the rules above, we made the following adjustments to the original RIASEC ratings 
before building predictive models in Step 2: 

• Trimmed means (or exact value, if same) were used in instances where an occupation-
RIASEC combination was flagged for Rule 1, where the outlying rater’s rating was 
removed prior to calculating the trimmed mean. 

• Expert ratings from Dr. Rounds were used in instances where an occupation-RIASEC 
was flagged for Rule 2.6 

• The modal (i.e., agree upon) rating was used in instances where an occupation-RIASEC 
combination was flagged for Rule 3. 

 
Note that if an occupation-RIASEC combination was not flagged based on one of the rules 
above, the mean rating across raters was used as the final rating for a given RIASEC dimension 
(i.e., the ratings published in the O*NET database from which the RIASEC data were drawn). 

Given the high-point codes in the O*NET database are a function of the RIASEC ratings, we 
revisited whether high-point codes for the occupations impacted by the rules above 
necessitated changes to their high-point codes. This evaluation revealed the need for us to 

 
6 HumRRO enlisted Dr. Rounds to provide expert judgment on occupations where past, individual rater information 
existed and flagged under Rule 2. Dr. Rounds was provided an Excel based rating booklet consisting of: (a) ratings 
instructions (see Appendix B), (b) a ratings sheet, (c) O*NET occupational descriptions, and (d) associated task 
statements. After completing the re-rating exercise, we considered Dr. Rounds’ ratings as the new final rating 
associated with a given occupation-RIASEC combination for purposes of building prediction models.  
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update high-point codes for 27 of 974 (2.7%) occupations and 214 of 2,922 (7.3%) occupation-
RIASEC high-point code combinations (974 occupations x 3 high-point codes) given changes to 
ratings based on the rules above.7  

In sum, the final 2008-2013 Dataset was constructed such that the original RIASEC ratings 
were retained for an occupation if that occupation was not flagged for Rules 1, 2, or 3. Trimmed 
means or modal ratings were used for occupation-RIASEC combinations flagged based on 
Rules 1 and 3, respectively. Dr. Round’s new ratings were for occupation-RIASEC combinations 
flagged based on Rule 2. This process resulted in a complete and final dataset with interest 
information for 974 occupations, which was subsequently used for the development and 
evaluation of initial RIASEC prediction models. 

  

 
7 214 is the total of new RIASEC high-point codes when no tied situations occurred for the first position, first and 
second position, and finally, the first, second and third positions.  
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Step 2: Developing and Evaluating Initial RIASEC Prediction Models 

As alluded to above, an important element of the current effort was conducting analyses to 
understand which types of prediction models are best for predicting trained human raters' 
RIASEC ratings. As such, our focus in this initial modeling step was on developing and 
evaluating a large set of potential models with the aim of what works best for maximizing 
prediction. During Step 2, we were not focused on models that would be sensitive to practical 
considerations (e.g., how soon certain model inputs would become available for use after a new 
O*NET-SOC is introduced into the O*NET database). We factored in practical considerations 
during later steps in our development effort (see Step 6 in this report). Additionally, focusing on 
identifying models that offered the best levels of prediction during Step 2—regardless of 
practicality—afforded us important benchmarks for later steps. Specifically, we used the best-
performing models from Step 2 as benchmarks for determining how much predictive value 
would be lost (if any) were we to adopt a model that balanced both prediction and practical 
considerations for implementation in future versions of O*NET.  
 
In light of our initial focus on prediction, our activities in this step included the following: 

1. Preparing text for use in prediction models. As alluded to above, text can be quantified in 
different ways for use in prediction models. We quantified text from occupation 
descriptions, occupation titles, task statements, and interest items (IP and CABIN) using 
various methods, as needed, to support the models.  

2. Developing specifications for 17 different models for predicting numeric RIASEC 
descriptiveness ratings for O*NET occupations. Models were differentiated by the types 
of O*NET data used as the basis for generating predictions (e.g., occupation 
descriptions, titles, task statements, importance ratings for KSAs) and how text-based 
inputs were quantified for purposes of modeling (e.g., frequency counts, embeddings, 
cosine similarity). 

3. Training and evaluating models focused on predicting RIASEC descriptiveness ratings 
(criteria) as a function of input data (e.g., occupation descriptions, titles, task statements, 
importance ratings for KSAs) using the 2013-2018 Dataset formulated in Step 1. 

4. Training and evaluating ensembles of the prediction models above to see if we could 
improve the prediction of interest ratings. Ensembles are simply composites of different 
models’ predicted values. Our goal here was to identify the best-performing individual 
models and combine their predictions together to improve the prediction of each 
RIASEC dimension. We examined two stages of ensembles using the 2013-2018 
Dataset formulated in Step 1. Inputs for the first-stage ensembles for a given RIASEC 
dimension were predictions made from our initial models for that dimension, and inputs 
for the second-stage ensembles for a given RIASEC dimension were predictions from 
the best-performing first-stage ensembles for all RIASEC dimensions. 

Creating Inputs/Features for Prediction Models  

The 2008-2013 Dataset included information necessary to construct the features (a machine-
learning term for model inputs or predictor variables) that we included in various prediction 
models we examined. As we note later, not all features were included in all prediction models; 
here, we simply introduce how key features were constructed. Some features were already 
quantified in the dataset (i.e., importance ratings for KSAs and GWAs), but some of the fields in 
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the dataset were text and required preprocessing to quantify as numeric features (i.e., 
occupation descriptions, titles, task statements, interest items). Below, we describe the 
approaches we used to generate features from occupational descriptions, titles, and task text 
based on bag-of-words (BoW) methods, SBERT embeddings, and text-similarity metrics. 

In all analyses involving task statements, we limited the task list for each occupation to only 
those task statements that were designated by O*NET as “core” tasks.8 If an occupation did not 
include any core tasks (i.e., because the task list was new and O*NET had not yet received 
ratings of task importance, or none of the tasks satisfied O*NET’s criteria for core tasks), we 
used all task statements associated with that occupation. 

Bag-of-Words (BoW) Features 

As a baseline approach to representing text as numeric data, we used the bag-of-words (BoW) 
methods from Putka et al. (2023) to compute frequency-based features. BoW methods account 
for the ways in which word usage relates to text characteristics but do not account for the 
semantic similarity of words (e.g., synonyms such as “vehicle” and “automobile”) nor the context 
in which those words are used (e.g., “appendix” could refer to a bodily organ or an auxiliary 
portion of a document). 

We prepared the text for BoW processing by concatenating the relevant text (i.e., O*NET-SOC 
title, occupation description, and task statements) from each O*NET-SOC into a single block of 
text, replacing contractions with their uncontracted long forms, removing all punctuation except 
for intra-word dashes, replacing symbols with the words they represent (e.g., replacing 
ampersands with “and”), replacing numerals with words (e.g., replacing “20” with “twenty” and 
“3rd” with “third”), and converting all text to lower case.  

Next, we used TreeTagger (Schmid, 1994) to map each word to its lemma (i.e., its dictionary 
form) so different inflections and forms of a word can be considered equivalent in our analyses 
(e.g., “acquire,” “acquiring,” and “acquired” were all matched to the lemma “acquire”). After 
lemmatizing the text, we computed four different quantitative representations of the tokens 
(“token” is an NLP term for a word-like text element): 

• Raw term frequencies (raw counts of the number of times each token occurred in each 
piece of text) 

• Relative term frequencies (raw term frequencies divided by the number of tokens in each 
piece of text) 

 
We used relative term frequencies in our BoW models. Raw term frequencies were simply 
interim values that supported the computation of relative term frequencies; we did not use those 
values as features in our modeling work. 

SBERT Embeddings 

BoW methods allow researchers to produce simple quantitative representations of text using 
only frequencies of word usage within documents (and across documents, in the case of TF-IDF 
weights). However, these methods only facilitate literal evaluations of the text; as noted earlier, 

 
8 See O*NET Online’s Scales, Ratings, and Standardized Scores page for a description of how core tasks are 
defined in O*NET: https://www.onetonline.org/help/online/scales 

https://www.onetonline.org/help/online/scales
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they do not account for the semantic similarity among lemmas or the contexts in which words 
are used. Advances in language modeling have made it possible to overcome these limitations 
of BoW methods and quantify the semantic content of sentences or paragraphs in more 
nuanced ways. For this research, we used the Sentence BERT (SBERT) model from the 
“SentenceTransformers” Python library (Reimers & Gurevych, 2019); specifically, we used the 
“nli-distilroberta-base-v2” SBERT model. SBERT is a model for converting pieces of sentence- 
or paragraph-like text to scores on a set of 768 quantitative dimensions, and it was built using 
bidirectional encoder representations from transformers (BERT; Devlin et al., 2019) networks. 
HumRRO has had success using SBERT with text from the O*NET database in the past, most 
notably in the development of an updated related occupations framework (Dahlke et al., 2022). 

We used SBERT to generate embeddings (in their original scaling used by the transformer 
model) for the following configurations of text9: 

• O*NET-SOC Titles: Embedding generated for each title as a phrase-like piece of text. 

• Occupation descriptions: Embeddings generated by treating each description as an in-
tact block of text. 
- During exploratory analyses, we found this yielded better predictions than 

generating a separate embedding for each sentence from the descriptions and 
then aggregating/averaging the sentence-level embeddings within each 
occupation. 

• Task statements: Embeddings generated by treating each task as a separate document, 
then aggregating/averaging the embeddings across tasks within an occupation. 
- During exploratory analyses, we found this yielded better predictions than 

concatenating tasks from each occupation into a paragraph-like block of text and 
generating embeddings for each collection of concatenated text. 

• Combined occupational text (O*NET-SOC title, occupation description, and task 
statements): Embeddings generated for concatenated paragraph-like blocks of text 
consisting of occupation titles, descriptions, and tasks. 

 
As we note later, these different configurations correspond to different feature sets we included 
in our prediction models. 

Cosines Between SBERT Embeddings for O*NET-SOCs and Interests 

We also used SBERT to generate embeddings for O*NET Interest Profiler Short Form RIASEC 
items and CABIN items (with O*NET’s illustrative activities for basic interests added to the item 
lists of their respective CABIN dimensions) as both (a) individual items and (b) a concatenated 
block of item text for each dimension. We used those embeddings to create features that 
express the similarity between O*NET-SOCs’ text and sets of text that exemplify each of the six 
RIASEC dimensions. We used two types of text to create features that represent RIASEC 
similarity: (a) O*NET text from occupations that are either very high or very low on a given 
RIASEC dimension and (b) item text from the Interest Profiler Short Form RIASEC measure. 

 
9 Later in our research effort, we also generated embeddings for other text that became available in later versions of 
the O*NET database after O*NET 18.0 (e.g., alternate titles, detailed work activities, intermediate work activities). 
Under Step 6, we explain how we used these additional types of text to further refine models developed under Step 2. 
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We also used features summarizing the similarity between O*NET-SOCs’ text and basic interest 
dimensions from CABIN. We discuss each of these in the subsections that follow. 

Cosines Between SBERT Embeddings for O*NET-SOCs and Exemplar Occupations 

For each RIASEC dimension, we identified the O*NET-SOCs with importance ratings in the top 
and bottom 5% of that dimension’s distribution within the subset of occupations we used to train 
the prediction models (see the Sample Splitting section below). Then, for each of those 12 sets 
of exemplar O*NET-SOCs, we computed the average cosine between the SBERT embeddings 
for each O*NET-SOC’s text and the exemplar O*NET-SOCs’ text. For these cosines, we used 
embeddings that represented concatenated text from O*NET-SOC titles, occupation 
descriptions, and task statements. We used the following formula to compute the cosine 
between embeddings from each pair of O*NET-SOCs: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋,𝑌𝑌 =
∑ �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋𝑖𝑖 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑌𝑌𝑖𝑖�
768
𝑖𝑖=1

�∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋𝑖𝑖
2768

𝑖𝑖=1 �∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑌𝑌𝑖𝑖
2768
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We used the average cosine between each O*NET-SOC’s text and each of the 12 sets of 
exemplar O*NET-SOCs as features in our modeling work. 

Cosines Between SBERT Embeddings for O*NET-SOCs and Interest Items  

For each dimension of the RIASEC and CABIN measures (including the illustrative activities 
O*NET developed for each of the CABIN dimensions), we computed the cosine between the 
SBERT embeddings for each O*NET-SOC and each interest dimension. For these cosines, we 
used O*NET-SOC embeddings that represented concatenated text from O*NET-SOC titles, 
occupation descriptions, and task statements. On the interest side, we used embeddings we 
constructed by (a) generating item-level embeddings for each item on each measure and (b) 
averaging the item-level embeddings within each interest dimension, resulting in one aggregate 
SBERT embedding per interest dimension. After comparing the O*NET-SOC embeddings and 
the interest dimension embeddings, each O*NET-SOC had a profile of cosines that represented 
the similarity of that occupation’s text with the text representing each of the RIASEC and CABIN 
dimensions.  

Initial Models 

We developed a set of models to predict ratings for each of the six RIASEC dimensions. Below, 
we first describe the models we considered and their features. We then describe how we trained 
and cross-validated the models. Lastly, we close this section with an evaluation of our initial 
models. 

Specifications for Initial Models 

We fit a variety of models to predict RIASEC ratings; the types of features used in these models 
are defined in Table 2.1. Separate models were trained to predict each RIASEC dimension. For 
each model, we evaluated the performance of different potential regression methods for fitting 
that model. We evaluated least squares (OLS) regression, sparse partial least squares (SPLS) 
regression, and elastic net (EN) regression for all models except those where the number of 
features was equal to or greater than the size of the training sample (i.e., M1-M5); in those 
cases, we used only SPLS and EN regression.  SPLS and EN are well-suited to models in 
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which there are a large number of features (and even models in which the number of features 
exceeds the number of cases), and both allow uninformative features to be dropped from a 
model (we describe these methods below).  

Table 2.1. Summary of Models Trained for Each RIASEC Dimension 

Model Description 
Regression 

Methods 
Evaluated 

# of 
Features Feature Type 

M1 Bag of Words (BoW) Features SPLS, EN 1082 Occupational Titles, 
Descriptions, Tasks 

M2 
SBERT Embeddings for 
Concatenated Text from Titles, 
Descriptions, and Tasks 

SPLS, EN 
768 Occupational Titles, 

Descriptions, Tasks 

M3 Title SBERT Embeddings SPLS, EN 768 Occupational Titles 

M4 Description SBERT 
Embeddings 

SPLS, EN 768 Occupational 
Descriptions 

M5 Task SBERT Embeddings SPLS, EN 768 Tasks 

M6 SBERT High RIASEC 
Occupation Similarity 

OLS, SPLS, EN 6 High RIASEC 
Occupational Similarity 

M7 SBERT Low RIASEC 
Occupation Similarity 

OLS, SPLS, EN 6 Low RIASEC 
Occupational Similarity 

M8 SBERT Combined High/Low 
RIASEC Occupation Similarity 

OLS, SPLS, EN 12 High and Low RIASEC 
Occupational Similarity 

M9 SBERT RIASEC Interest 
Profiler Similarity 

OLS, SPLS, EN 6 IP Item Similarity 

M10 SBERT CABIN Similarity SPLS, EN 41 CABIN Item Similarity 

M11 O*NET Knowledge Importance 
Ratings OLS, SPLS, EN 33 Knowledge Importance 

M12 O*NET Skill Importance Ratings OLS, SPLS, EN 35 Skill Importance 

M13 O*NET Ability Importance 
Ratings OLS, SPLS, EN 52 Ability Importance 

M14 O*NET GWA Importance 
Ratings OLS, SPLS, EN 41 GWA Importance 

Note. OLS = Ordinary least squares regression. SPLS = Sparse partial least squares regression. EN = Elastic net 
regression. # of Features = Number of features initially input into the models. Two of the regression methods we 
examined (SPLS and EN) perform variable selection, so the number of features in the final fitted model may be less 
than the starting number of features initially input into the model. 
 
SPLS regression (Chun & Keleş, 2010) is an approach for modeling high-dimensional data (i.e., 
data with a large number of features), especially when those data exhibit multicollinearity. It is 
an improvement on partial least squares (PLS), which is a method for reducing the 
dimensionality of a feature set while predicting an outcome. Whereas PLS reduces the 
dimensionality of features within a sample without accounting for the cross-validation of that 
process, SPLS uses hyperparameters to regularize the dimension reduction process and limit 
the extent to which the model capitalizes on idiosyncrasies of a single sample. We varied the K 
hyperparameter (which determines the number of components extracted from the feature set to 
use as predictors in the model) from 1 to 10 in increments of 1, except when a model had fewer 
than 10 features (in those cases, we set the upper limit of K to the number of features minus 1). 
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We also varied the eta threshold hyperparameter from 0.0 to 0.9 in increments of 0.1 (this 
hyperparameter can take on values between 0 and 1). 

EN regression (Friedman et al., 2010) is a regularized regression procedure that helps to avoid 
overfitting due to multicollinearity. It combines two other regularized regression approaches—
ridge regression and LASSO (least absolute shrinkage and selection operator) regression—into 
a single framework that accounts for the regularization penalties from both methods. Elastic net 
regression uses a hyperparameter called alpha to blend the L1 (LASSO) and L2 (ridge) 
penalties into a single regularization penalty. The alpha hyperparameter can range from 0 (all 
weight to ridge) to 1 (all weight to LASSO), and its ability to mix the two penalties—or allow 
either ridge or LASSO to serve as a special case penalty term when alpha is 0 or 1—is what 
gives elastic net regression its “elasticity.” We varied the alpha mixing hyperparameter from 0 to 
1 in increments of 0.1, and we varied the lambda hyperparameters (which determine the 
severity of the regularization penalty) from 10-4 to 20. To constrain the number of lambda values 
while still covering this whole range, we defined the candidate values by raising 10 to the power 
of 100 equally spaced exponent values between -4 and 1 and also tested lambda values 
ranging from 11 to 20 in increments of 1. EN regression is sensitive to the scaling of features, 
and all features must be on the same scale for the method to work properly, so we standardized 
all features using means and SDs from the training sample (described in the sample splitting 
section below) before conducting our analyses. 

After fitting models using each of the relevant regression methods for a given RIASEC 
dimension, we compared the cross-validated performance of each combination of model 
formulation and regression method. We selected the model-method combinations that exhibited 
the largest cross-validated correlation with interest ratings from trained human raters for use in 
subsequent ensemble modeling efforts. Before we describe the subsequent ensemble modeling 
efforts, though, we first describe the sample splitting, hyperparameter tuning, fitting, and cross-
validation strategy we used to evaluate the models in Table 2.1. 

Sample Splitting 

To avoid overfitting our models (and subsequent ensembles), we took steps to ensure we did 
not capitalize on idiosyncrasies in the data during all steps of our modeling procedure. 
Specifically, we first split the 2008-2013 Dataset into two subsets: 75% of occupations were 
assigned to our “training” data set that we used to fit models, and the other 25% were assigned 
to our “test” data set that we used to cross-validate the performance of our models. We stratified 
our data splitting process by job family to ensure a comparable representation of all job families 
in both partitions of our data.10 As we explored the performance of our models, this independent 
split of our data allowed us to use the test set to evaluate the performance of models developed 
using the training set and determine how the models perform when applied to unfamiliar data. 

Hyperparameter Tuning 

We divided our training data into five “folds” to support the development of models that involve 
hyperparameters. Some types of models—such as ordinary least squares (OLS) regression and 
logistic regression—involve estimating slope and intercept parameters based on relations in a 
dataset, and an analyst has no influence over those parameter estimates aside from their 
choice of cases to include in the dataset on which their model is trained. In other words, in these 

 
10 Job families are synonymous with the “Major Group” level included and described in the Standard Occupational 
Classification. These job families are also imbedded in the O*NET-SOC 2019 Taxonomy. 

https://www.bls.gov/soc/
https://www.bls.gov/soc/
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types of models, the parameters are fully determined by the data on which a model is trained; 
once the data have been chosen, the parameter estimates are invariant. The procedures 
described in this section are not relevant to these types of models. 

For other types of models, such as SPLS and EN regression, the correspondence between data 
and parameter estimates is not as straightforward because there is not just one way in which 
the model can learn. These models require an analyst to select hyperparameters that govern 
how the model learns from the training data; once the data have been chosen, the parameter 
estimates may vary as a function of one’s choice of hyperparameters. Depending on the 
machine learning approach, hyperparameters can define things such as the speed with which 
the model learns (e.g., when developing models involving decision trees, a model will learn 
faster when one uses fewer trees but may not perform as well as a model involving more trees) 
or the way in which model error/loss is quantified (e.g., ridge regression and LASSO regression 
require the analyst to define a λ regularization hyperparameter that defines the severity of the 
penalty a model incurs for having large coefficients; this penalty is added to the model’s total 
error term that also includes residual/unexplained variance in the observations). 

Whereas model parameters (e.g., regression coefficients) are learned directly from a training 
data set, hyperparameters must be selected by an analyst, usually through a process of 
experimentation known as hyperparameter tuning. There are infinite possible sets of 
hyperparameters one could test, so an analyst will need to decide up-front on a strategy for 
identifying candidate values for each hyperparameter. Hyperparameter tuning commonly 
involves (a) dividing the training data into k equal folds (where the number of folds, k, is chosen 
by the analyst) and (b) deciding how to sample sets of hyperparameters to test, typically through 
either a “grid search” (i.e., systematically test all possible combinations of the candidate 
hyperparameter values; this is the strategy we use in this research) or a “random search” (i.e., 
test randomly sampled combinations of the candidate hyperparameter values). In this research, 
we used five folds of training data and a grid search strategy. Table 2.2 shows the breakdown of 
our data between the training and test data sets, as well as how the training data were divided 
into folds. 

Table 2.2. Percentage of Data Included in the Training Data, Training Folds, and Test Data 

Data Segment Training Data Test Data 
Complete Segment 75% 25% 

Fold 1 15% --- 
Fold 2 15% --- 
Fold 3 15% --- 
Fold 4 15% --- 
Fold 5 15% --- 

Note. All percentages express the sizes of data segments relative to the complete dataset. 
 
After applying the data partitioning strategy from Table 2.2 to the 974 O*NET-SOCs in the 2008-
2013 Dataset and stratifying our sampling approach by job family, we arrived at the analysis 
sample summarized in Table 2.3. The first fold of our training data segment ended up slightly 
larger than the other folds, but not considerably so, and our procedure for balancing job families 
had its intended effect of ensuring that all data segments were similar in their makeup.  
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Table 2.3. Sample Sizes for Job Families Across 2008-2013 Dataset Segments 

Job Family 
Training Data Folds Test 

Data Total 
All  1 2 3 4 5 

11 Management  44 9 9 9 8 9 15 59 

13 Business and Financial 
Operations  38 8 8 7 8 7 13 51 

15 Computer and Mathematical  25 5 5 5 5 5 8 33 

17 Architecture and Engineering  54 11 10 11 11 11 17 71 

19 Life, Physical, and Social 
Science  45 9 9 9 9 9 15 60 

21 Community and Social Service  11 2 2 2 2 3 3 14 

23 Legal  6 2 1 1 1 1 2 8 

25 Educational Instruction and 
Library  46 9 9 9 10 9 15 61 

27 Arts, Design, Entertainment, 
Sports, and Media  32 6 7 6 7 6 11 43 

29 Healthcare Practitioners and 
Technical  64 13 13 13 13 12 22 86 

31 Healthcare Support  14 3 3 3 2 3 4 18 

33 Protective Service  22 5 5 4 4 4 7 29 

35 Food Preparation and Serving 
Related  13 3 2 3 3 2 4 17 

37 Building and Grounds Cleaning 
and Maintenance  6 1 1 2 1 1 2 8 

39 Personal Care and Service  24 5 4 5 5 5 8 32 

41 Sales and Related  18 4 3 4 4 3 6 24 

43 Office and Administrative 
Support  48 10 10 10 9 9 15 63 

45 Farming, Fishing, and Forestry  12 3 2 2 2 3 5 17 

47 Construction and Extraction  45 9 9 9 9 9 16 61 

49 Installation, Maintenance, and 
Repair  41 8 8 8 9 8 13 54 

51 Production  84 17 16 17 17 17 28 112 

53 Transportation and Material 
Moving  39 8 8 8 7 8 14 53 

Total   731 150 144 147 146 144 243 974 
Note. The number preceding the job family is the first two digits of the O*NET-SOC 2019 code corresponding to that 
job family. 
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The hyperparameter tuning process is iterative, and the total number of iterations is the product 
of the number of folds multiplied by the number of parameter combinations to be tested. Each 
instance of the process involves selecting the set of candidate hyperparameters to test, 
selecting which fold to set aside from one’s training data as a holdout fold, training a model 
using the selected hyperparameters with the non-holdout training data, computing predictions 
on the holdout fold using the model, and evaluating the fit of the predicted values to the actual 
values within the holdout fold. In our case, we evaluated the fit of predictions by first computing 
the root mean squared error (RMSE) between predicted values and actual outcomes (i.e., 
RIASEC ratings) within each holdout fold, and then computing the mean and standard deviation 
of those RMSEs across folds. We selected the hyperparameter values that yielded the lowest 
mean RMSE (and, in the event of a tie, the smallest standard deviation of hyperparameters’ 
RMSEs) for use in subsequent models. We also saved the predicted values for all holdout folds 
for use in our subsequent ensemble modeling efforts, as this helped us to maintain 
independence between the data used to train models and those used to evaluate the models. 

Cross-Validation and Final Initial Model Fitting 

After identifying the best-performing set of hyperparameters (if applicable to the modeling 
procedure), we trained a model using the complete training data set and cross-validated that 
model using the test data set. We then fit a final model on the complete dataset and saved this 
final model for potential future use. We also saved the predicted values for the test data for use 
in evaluating the performance of our ensemble models. 

Evaluation of Initial Models 

As noted above, we first experimented with OLS, SPLS, and EN regression when fitting our 
initial set of models. We applied all three methods to each feature set, except when the number 
of features was equal to or greater than the size of the training sample (i.e., M1-M5), as those 
methods can accommodate analyses involving more features than observations. The best-
performing methods and hyperparameter values for those methods for each model are 
summarized in Table C.1 in Appendix C. Except for Model 1, the EN method consistently 
outperformed the SPLS method. 

For the best-performing specification (method) for each model, we calculated RMSE and 
multiple R metrics, and we have organized the results for these metrics in Tables 2.4 and 2.5, 
respectively. In all our modeling efforts, we used RMSE as the primary fit metric for comparing 
competing machine learning methods, hyperparameter combinations, and feature sets and 
selecting our final model for each RIASEC dimension. We also report multiple R values as it is a 
standardized metric familiar to researchers (analogous to a criterion-related validity estimate) 
and can facilitate comparison to other research and benchmarks (e.g., comparison to interrater 
reliability estimates). We did not use the multiple R statistics to make decisions during our 
modeling workflow, as we encountered a situation early in our model development process that 
suggested focusing on maximizing R can have undesirable consequences with some types of 
models. Specifically, we noticed an analysis in which we obtained a large multiple R result after 
tuning our hyperparameters, but although the linear relationship was strong in the standardized 
sense, when we plotted the observed and predicted values, the predicted values did not have 
the same scaling as the observed values. After identifying that issue, we adopted RMSE as our 
primary fit metric because it characterizes the strength of the association between two sets of 
values while also being sensitive to differences in the scaling of those values. After altering our 
models to focus on minimizing RMSE, we did not encounter any additional problems with 
predictions having incorrect scales. 
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Table 2.4. Cross-Validated RMSE Results for Best Specifications for Initial 14 Models for Each RIASEC Dimension 

 
Note. # of Features = Number of features initially input into the model. M = Average cross-validated RMSE across RIASEC dimensions. Models are sorted in 
ascending order of mean cross-validated RMSE in testing data. RMSE values are shaded along a green-red color gradient to facilitate interpretation (lower 
values—indicating better model performance—are shaded green; higher values—indicating poorer model performance—are shaded red). 
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Table 2.5. Cross-Validated Multiple R Results for Best Specifications for Initial 14 Models for Each RIASEC Dimension 

 
Note. # of Features = Number of features initially input into the model. M = Average cross-validated R across RIASEC dimensions. Models are sorted in ascending 
order of mean cross-validated R in testing data. R values are shaded along a green-red color gradient to facilitate interpretation (higher values—indicating better 
model performance—are shaded green; lower values—indicating poorer model performance—are shaded red). 
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In general, the level of prediction obtained by these models was strong and in line with existing 
benchmarks. For example, Table 2.6 compares cross-validated test set multiple R’s for what 
was the best-performing model on average across RIASEC dimensions (M5: Task SBERT 
Embeddings) to three benchmarks: 

• Weighted average single-rater reliability (ICC[C,1]) for sample raters in the 2008-2013 
O*NET interest data collections. This approximates the expected correlation one would 
expect to see between any two trained raters selected at random.  

• Weighted average interrater reliability (ICC[C,3]) for sample raters in the 2008-2013 
O*NET interest data collections. This approximates the expected correlation one would 
expect to see between mean ratings provided by two randomly selected groups of three 
trained raters—effectively, the operational reliability of the published interest ratings in 
O*NET. This reliability estimate reflects the theoretical upper bound on the correlation 
between predicted and observed interest ratings. 

• Putka et al. (2023) – The cross-validated multiple R for the BoW-based model reported 
in the Putka et al. article that modeled O*NET interest ratings. 

 
Table 2.6. Comparison of Initial Model 5 Performance to Existing Benchmarks 
Benchmark/Model M   R I A S E C 

Weighted Average Single Rater Reliability ICC(C,1) .79   .86 .79 .78 .86 .78 .64 

Weighted Average Interrater Reliability ICC(C,3) .91  .95 .92 .91 .95 .92 .84 

Putka et al., (2023) Model Cross-Validated R .84  .90 .83 .83 .92 .85 .73 

Model 5: Task SBERT Embeddings Cross-Validated Test 
Set R .85   .91 .84 .85 .91 .84 .74 

Note. M = Average across RIASEC dimensions. ICC(C,1) and ICC(C,3) statistics reflect interrater reliability estimates 
for interest ratings in the 2008-2013 Dataset. 
 
Model 5’s cross-validated test set multiple R’s consistently exceeded the correlation one might 
expect to see between any two trained raters and approached the upper bound on validity 
implied by ICC(C,3). The levels of test set cross-validity observed for Model 5 were also 
comparable to those reported by Putka et al. (2023) 

Though the initial models showed promising results across the RIASEC dimensions, the 
predictions for Conventional interests tended to have the weakest correspondence to their 
target values. We designed our modeling workflow around the potential for ensembles to make 
up for the deficiencies of individual initial models, so we proceeded to develop first-stage 
ensembles in which the predictions from our initial models were treated as features. 

First-Stage Ensembles 

The modeling process described in the sections above was only an initial step in our prediction 
strategy. After training the models and determining which machine learning methods performed 
the best for predicting each RIASEC dimension, we experimented with ways to combine the 
predictions from sets of models into ensemble predictions to see if we could improve prediction. 
Table 2.7 shows the various sets of models we combined into composites using ensemble 
models for each RIASEC dimension. For each ensemble, we evaluated combining model 
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predictions using OLS, SPLS, and EN regression to predict interest ratings to see which one 
produced better results. 

Table 2.7. Summary of Ensembles Trained for Each RIASEC Dimension 

Ensemble  

Base Models 
(Titles, Descriptions,  

and Tasks) 

Separate  
High/Low 
RIASEC  

Occupation 
Models 

Combined 
High/Low 
RIASEC 

Occupation 
Model 

Interest 
Profiler 

Item 
Similarity  

Model 

CABIN 
Item 

Similarity  
Model 

KSA 
Importance 

Model 

GWA 
Importance 

Model 

M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 
E1 X X X X          
E2 X X X X X X        
E3 X X X X   X       
E4 X X X X X X  X      
E5 X X X X   X X      
E6 X X X X X X   X     
E7 X X X X   X  X     
E8 X X X X X X  X X     
E9 X X X X   X X X     

E10 X X X X      X X X X 
E11 X X X X X X    X X X X 
E12 X X X X   X   X X X X 
E13 X X X X X X  X  X X X X 
E14 X X X X   X X  X X X X 
E15 X X X X X X   X X X X X 
E16 X X X X   X  X X X X X 
E17 X X X X X X  X X X X X X 
E18 X X X X   X X X X X X X 

 

First-Stage Ensemble Training and Cross-Validation Process 

We used the same training and test data as we used in our initial modeling analyses and the 
same folds of data as we used in our five-fold hyperparameter tuning process (for SPLS and EN 
regression). To maintain independence between our training and test samples in both our 
hyperparameter tuning and our cross-validation analyses, we saved the predictions we 
generated for each set of four training folds during our modeling process to use as features in 
our ensemble models. As we set aside each fold of our training data to use as a holdout sample 
during hyperparameter tuning, we used the predictions generated from models trained on the 
other four folds as features in our ensembling process. For example, when we built an 
ensemble model that omitted the first fold of training data, we used predictions from models 
trained on folds 2–5 to both train the model and evaluate the model using data from fold 1. 

Evaluation of First-Stage Ensembles 

We experimented with OLS, SPLS, and EN methods to develop first-stage ensemble models 
that used predictions from our initial models as features. The best-performing methods and 
hyperparameter values for each ensemble are summarized in Table C.2 in Appendix C, and the 
corresponding RMSE and multiple R fit metrics are summarized in Tables 2.8 and 2.9, 
respectively.  
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Table 2.8. Cross-Validated RMSE Results for Best Specifications for 18 First-Stage Ensembles for Each RIASEC Dimension 

 
Note. # of Features = Number of features initially input into the ensemble. M = Average cross-validated RMSE across RIASEC dimensions. Ensembles are sorted 
in ascending order of mean cross-validated RMSE in testing data. RMSE values are shaded along a green-red color gradient to facilitate interpretation (lower 
values—indicating better ensemble performance—are shaded green; higher values—indicating poorer ensemble performance—are shaded red). 
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Table 2.9. Cross-Validated Multiple R Results for Best Specifications for 18 First-Stage Ensembles for Each RIASEC 
Dimension 

 
Note. # of Features = Number of features initially input into the ensemble. M = Average cross-validated R across RIASEC dimensions. Ensembles are sorted in 
ascending order of mean cross-validated R in testing data. R values are shaded along a green-red color gradient to facilitate interpretation (higher values—
indicating better ensemble performance—are shaded green; lower values—indicating poorer ensemble performance—are shaded red). 
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Although the first-stage ensembles did improve prediction relative to the best-performing initial 
models (particularly the ensembles that included KSA/GWA models, i.e., E10-E18), the gains 
were not that great.  We hypothesize the lack of substantial gains may be a reflection of high 
correlations among predictions from the initial models. Therefore, we computed correlations 
among model predictions and summarized the distributions of those correlations in Table 2.10.  

Table 2.10. Summary of Correlations Among Predictions from Initial Models Used as 
Features in First-Stage Ensembles 

Model 
Range NOccupations kCorrelations Statistic R I A S E C 

M2 – M10 
(Text 

Models 
Only) 

974 36 Mean .93 .88 .89 .93 .86 .87 
SD .04 .06 .06 .04 .07 .07 
Min .85 .76 .76 .84 .70 .73 
Max .99 .98 1.00 .99 .99 .98 

M2 – M14 
(Text 

Models and 
KSA/GWA 

Rating 
Models) 

839 78 Mean .91 .82 .82 .89 .80 .78 

SD .04 .08 .09 .05 .08 .11 

Min .83 .64 .61 .78 .65 .55 

Max .99 .98 1.00 .99 .99 .98 
 

We found the average correlation between initial model predicted values ranged from .86 for 
Enterprising interests to .93 for Realistic and Social interests across models contributing to the 
text-only ensembles (i.e., E1-E9) and ranged from .78 for Conventional interests to .91 for 
Realistic interests across models contributing to the text+KSA/GWA ensembles (i.e., E10-
E18).11 Ensembles gain the most predictive advantage over input models when predictions from 
input models are less correlated with one another. 

Furthermore, we noticed that even with ensembling, the multiple R values for Conventional 
interests reported in Table 2.9 continued to be lower than those for the other five RIASEC 
dimensions. The ensembles were not as effective as we had hoped at making up for the 
deficiencies of the initial models for Conventional interests. Our analysis strategy included two 
additional opportunities to improve the prediction of Conventional interest ratings (as well as the 
ratings for other dimensions) through our second-stage ensemble models and an additional 
phase of modeling work (the latter is described in the Step 6 section of this report). 

To gain more insight into how the best-performing first-stage ensemble models were functioning 
and how they were assigning weight to their features, we retrained all initial models and the 
best-performing first-stage ensembles on the full set of occupations in the 2008-2013 Dataset. 
We then gathered the model coefficients from these fully trained models and performed general 
dominance analyses to determine how each initial model contributed to the ensemble 
predictions (i.e., in terms of the proportion of the ensembles’ explained variance that was 
attributable to each initial model). These analyses did not require cross-validation, as they focus 

 
11 For purposes of this analysis, correlations were based on retrained versions of all initial models on the full set of 
occupations in the 2008-2013 Dataset (i.e., the predictions used for the regression coefficient and general dominance 
results described below).  
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on the internal functioning of the models and do not involve evaluations of the models’ ability to 
generalize to new samples. 

The best-performing first-stage ensembles used for these analyses (based on average cross-
validated RMSE across holdout training folds reported in Table 2.8) as well as for input into the 
second-stage ensembles we discuss next were as follows12: 

For O*NET-SOCs without KSA/GWA data: 

• Realistic:  Ensemble 1 

• Investigative:  Ensemble 3 

• Artistic:  Ensemble 1 

• Social:  Ensemble 7 

• Enterprising:  Ensemble 3 

• Investigative:  Ensemble 9 
 
For O*NET-SOCs with KSA/GWA data: 

• Realistic:  Ensemble 15 

• Investigative:  Ensemble 12 

• Artistic:  Ensemble 12 

• Social:  Ensemble 7 

• Enterprising:  Ensemble 17 

• Investigative:  Ensemble 16 
 
Tables 2.11 and 2.12 show the coefficients and general dominance weights for best-performing 
first-stage ensembles for O*NET-SOCs without KSA/GWA data (Table 2.11) and for O*NET-
SOCs with KSA/GWA data (Table 2.12). Regardless of the ensemble, the general dominance 
weights varied little across initial models that contributed to that ensemble, indicating that the 
initial models tend to contribute similarly to the ensemble predictions. We hypothesize that this 
again is due to high correlations among predictions from the initial models, effectively resulting 
in the weight assigned to input models being distributed more evenly. 

  

 
12 Note, we differentiate between two types of best-performing ensembles here because only the text-only ensembles 
(i.e., E1-E9) could be used for O*NET-SOCs without KSA/GWA data, whereas any ensemble (E1-E18) could be 
applied to O*NET-SOCs with KSA/GWA data. 
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Table 2.11. Regression Coefficients and Relative Importance Estimates for Best First-
Stage Ensembles for Each RIASEC Dimension for O*NET-SOCs without KSA/GWA Data 

Ensemble 
Feature 

Realistic Investigative Artistic Social Enterprising Conventional 

B RI B RI B RI B RI B RI B RI 

Intercept -.456 --- -.584 --- -.332 --- -.237 --- -.596 --- -.898 --- 

Model 2 .408 .266 .235 .211 .342 .267 .184 .171 .235 .213 .186 .148 

Model 3 .117 .219 .242 .187 .123 .210 .189 .154 .241 .189 .202 .121 

Model 4 .126 .248 .240 .198 .237 .252 .185 .166 .241 .199 .161 .134 

Model 5 .444 .267 .235 .206 .451 .271 .174 .170 .235 .206 .181 .156 

Model 6 --- --- --- --- --- --- --- --- --- --- --- --- 

Model 7 --- --- --- --- --- --- --- --- --- --- --- --- 

Model 8 --- --- .217 .198 --- --- .175 .170 .219 .194 .161 .153 

Model 9 --- --- --- --- --- --- --- --- --- --- .164 .140 

Model 10 --- --- --- --- --- --- .177 .169 --- --- .161 .148 

Note. B = Regression coefficient. RI = Relative importance reflecting the proportion of the ensemble R2 attributable to 
the given model based on a general dominance analysis. “---” indicates that predictions from the given model were 
not included in the best-performing ensemble for the given RIASEC dimension. 
 
Table 2.12. Regression Coefficients and Relative Importance Estimates for Best First-
Stage Ensembles for Each RIASEC Dimension for O*NET-SOCs with KSA/GWA Data 

Ensemble 
Feature 

Realistic Investigative Artistic Social Enterprising Conventional 

B RI B RI B RI B RI B RI B RI 

Intercept -.475 --- -.873 --- -.546 --- -.237 --- -.670 --- -1.500 --- 

Model 2 .207 .104 .144 .128 .157 .131 .184 .171 .189 .113 .147 .117 

Model 3 .127 .087 .147 .107 .168 .112 .189 .154 .227 .103 .160 .094 

Model 4 .166 .099 .149 .117 .162 .124 .185 .166 .182 .103 .130 .108 

Model 5 .192 .098 .145 .126 .155 .129 .174 .170 .167 .101 .142 .122 

Model 6 -.037 .085 --- --- --- --- --- --- .044 .087 --- --- 

Model 7 -.017 .087 --- --- --- --- --- --- -.037 .060 --- --- 

Model 8 --- --- .136 .118 .150 .122 .175 .170 --- --- .127 .114 

Model 9 --- --- --- --- --- --- --- --- -.003 .060 --- --- 

Model 10 .084 .093 --- --- --- --- .177 .169 .075 .092 .127 .114 

Model 11 .103 .087 .142 .107 .154 .112 --- --- .095 .074 .137 .097 

Model 12 .045 .080 .132 .110 .000 .061 --- --- .078 .071 .138 .069 

Model 13 .133 .089 .131 .087 .156 .102 --- --- .100 .058 .127 .077 

Model 14 .099 .091 .141 .100 .154 .107 --- --- .079 .077 .126 .089 

Note. B = Regression coefficient. RI = Relative importance reflecting the proportion of the ensemble R2 attributable to 
the given model based on a general dominance analysis. “---” indicates that predictions from the given model were 
not included in the best-performing ensemble for the given RIASEC dimension. 
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Second-Stage Ensembles 

The final set of models we developed during this step of our research were a second stage of 
ensembles that used the predictions from the best-performing first-stage ensembles (identified 
earlier) as features for predicting each RIASEC dimension. Predictions from these best-
performing first-stage ensembles for each RIASEC dimension served as inputs into our second-
stage ensembles. We used the same approach to training and cross-validation as we used for 
our first-stage ensembles (i.e., the predictions we use as features in these models will preserve 
the independence of the training and test samples). In this case, however, we formed the 
ensembles using OLS regression only since the second-stage ensemble for each RIASEC 
dimension consisted of only six predictors (i.e., the best first-stage ensemble prediction for the 
target RIASEC dimension, and the best first-stage ensemble predictions for the other five 
RIASEC dimensions). This approach is meant to capitalize on the circumplex structure of the 
RIASEC interest model in which the dimensions are not orthogonal; adjacent dimensions tend 
to be more positively correlated, while more distal dimensions tend to be weakly or negatively 
correlated. In previous research, we have found that ensemble models involving features based 
on all six RIASEC dimensions can increment the prediction of individual RIASEC dimensions 
(Dahlke & Putka, 2022). 

Before training the second-stage ensembles, we retrained the initial models and best-bet first-
stage ensembles on the entire training data set to generate the required features for the 
second-stage ensembles. Beyond the fact that they use the same features to predict all 
RIASEC dimensions’ ratings, the second-stage ensembles also differ from our other models in 
that we only trained them using OLS regression, and, therefore, they do not require 
hyperparameter tuning. Even so, we continued using the same five-fold cross-validation 
procedure as we used with the initial models and first-stage ensembles to (a) maintain 
consistency in how we produced evaluative metrics and (b) provide preliminary cross-validated 
fit metrics based on the training sample before applying models to the test sample. 

We have summarized the RMSE and multiple R fit metrics for the second-stage ensembles in 
Tables 2.13 and 2.14, respectively. To facilitate a comparison of the performance of the best-
performing first-stage ensembles and previously introduced benchmarks, Table 2.15 provides a 
side-by-side comparison of these ensembles and benchmarks. Examination of Table 2.15 
reveals that the second-stage ensembles appear to offer no clear advantage over the first-stage 
ensembles in terms of prediction regardless of dimension (in contrast to Dahlke & Putka, 2022).  

Lastly, we summarized the coefficients and general dominance weights for all second-stage 
ensembles in Table 2.16. These general dominance analysis results reveal that using the 
circumplex structure to form ensembles had the intended effect of parsing variance across 
RIASEC dimensions in each of the dimension-specific models. Regardless of whether 
KSA/GWA features were available for inclusion in the models, about 50% of the variance in 
second-stage Realistic interest predictions was attributable to first-stage Realistic interest 
predictions, about 83%-85% of the variance in second-stage Investigative interest predictions 
was attributable to first-stage Investigative interest predictions, and, for the remaining 
dimensions, about two-thirds of the variance in second-stage predictions was attributable to the 
first-stage predictions for the target interest dimension.  
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Table 2.13. Cross-Validated RMSE Results for Second-Stage Ensembles  

 

 
Table 2.14. Cross-Validated Multiple R Results for Second-Stage Ensembles 

 

Table 2.15. Comparison of Best First-Stage and Second-Stage Ensembles to Existing Benchmarks 
Benchmark/Model M   R I A S E C 
Weighted Average Single Rater Reliability ICC(C,1) .79   .86 .79 .78 .86 .78 .64 
Weighted Average Interrater Reliability ICC(C,3) .92   .95 .92 .91 .95 .92 .84 
Putka et al (2023) Model Cross-Validated R .84   .90 .83 .83 .92 .85 .73 
Best-Performing Text First-Stage Ensemble Cross-Validated Test Set R .87   .92 .86 .88 .93 .88 .77 
Best-Performing Text + KSA/GWA First-Stage Ensemble Cross-Validated Test Set R .89   .93 .88 .90 .93 .87 .80 
Text Only Second-Stage Ensemble Cross-Validated Test Set R .87   .92 .86 .88 .92 .88 .77 
Text + KSA/GWA Second-Stage Ensemble Cross-Validated Test Set R .88   .93 .87 .91 .92 .88 .80 

Note. R values are shaded along a green-red color gradient to facilitate interpretation (higher values—indicating better performance—are shaded green; lower 
values—indicating poorer performance—are shaded red). 
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Table 2.16. Regression Coefficients and Relative Importance Estimates for Second-Stage Ensembles 

Ensemble Input  
Realistic Investigative Artistic Social Enterprising Conventional 

B RI B RI B RI B RI B RI B RI 

Text Only Intercept -3.023 --- -1.262 --- -.695 --- -.828 --- -.711 --- -.860 --- 

Text Only Realistic (E1) 1.209 .525 .090 .030 .059 .104 .076 .207 .088 .169 .055 .057 

Text Only Investigative (E3) .070 .015 1.029 .836 .003 .014 .007 .007 .033 .056 .018 .027 

Text Only Artistic (E1) .137 .091 .067 .016 1.058 .680 .022 .047 .008 .013 .024 .148 

Text Only Social (E7) .150 .166 .028 .009 .003 .043 1.044 .639 .023 .027 .072 .061 

Text Only Enterprising (E3) .084 .158 .034 .076 .025 .015 .043 .031 1.087 .670 -.025 .063 

Text Only Conventional (E9) .187 .045 .095 .033 .045 .145 .029 .070 -.049 .065 1.088 .643 

                            

Text and KSA/GWA Intercept -3.331 --- -.209 --- -.880 --- -.887 --- -1.663 --- -2.627 --- 

Text and KSA/GWA Realistic (E15) 1.254 .493 .041 .034 .088 .110 .082 .216 .157 .168 .192 .066 

Text and KSA/GWA Investigative (E12) .086 .016 1.005 .849 -.003 .017 .011 .007 .035 .038 .043 .017 

Text and KSA/GWA Artistic (E12) .143 .104 -.005 .018 1.085 .658 .018 .052 .050 .016 .119 .153 

Text and KSA/GWA Social (E7) .156 .169 .013 .009 .007 .044 1.052 .622 .029 .034 .158 .051 

Text and KSA/GWA Enterprising (E17) .084 .166 -.026 .064 .007 .016 .049 .044 1.171 .682 .004 .055 

Text and KSA/GWA Conventional (E16) .188 .052 .015 .026 .057 .155 .026 .060 .002 .061 1.202 .657 

Note. Input = Intercept and best-performing first-stage ensemble for each RIASEC dimension (noted in parentheses). B = Regression coefficient. RI = Relative 
importance reflecting the proportion of the ensemble R2 attributable to the given model based on a general dominance analysis. “---” indicates that predictions from 
the given model were not included in the best-performing ensemble for the given RIASEC dimension. RI values are shaded along a green-red color gradient to 
facilitate interpretation (higher values are shaded green; lower values are shaded green). 
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Final Consolidation of Step 2 Modeling Results 

After training all models and ensembles planned for this first phase of analyses, we compared 
the performance of all first- and second-stage ensemble models for each RIASEC dimension to 
identify the best-performing ensemble for (a) occupations that had only text-based features 
available and (b) occupations that had both text-based features and KSA/GWA ratings 
available. Up to this point in our modeling process, all evaluations had been based on average 
cross-validated performance across folds within the training data to maintain independence 
between model comparisons made during the model development process (i.e., for determining 
which machine learning methods, hyperparameters, and—for ensembles—feature sets to use; 
and to select the final, best-forming models from this phase of predictive analyses). In this final 
consolidation, we used fit metrics for the 25% of holdout test data to decide which models to 
carry forward as empirical best-bet benchmarks. 

Table 2.17 shows the RMSE and multiple R results for each RIASEC dimension’s best-
performing ensemble by feature availability. We based our model-selection evaluations on 
unbounded predicted values without imposing the 1–7 range that defines the rating scale for 
O*NET’s RIASEC importance ratings. We do, however, show the metrics for predicted ratings 
after constraining them to the 1–7 range to provide an indication of the impact of that 
transformation on the quality of predictions. We based model selection on unbounded 
predictions because the “final” models identified during this phase of predictive modeling are, in 
fact, only preliminary prediction models within the complete scope of our research. The truly 
final models were identified later in Step 6 when both predictive power and practical 
considerations were factored into the final model selection. 

Table 2.17. Cross-Validity Estimates for Best Performing Ensembles 

Feature Availability Dimension Best Ensemble 
Unbounded 
Predictions 

Predictions Bounded 
Between 1 and 7 

RMSE R RMSE R 

Text Only Realistic 1st Stage E1 .845 .92 .825 .92 

Text Only Investigative 2nd Stage E 1.022 .86 1.011 .87 

Text Only Artistic 1st Stage E1 .700 .88 .678 .89 

Text Only Social 1st Stage E9 .781 .93 .772 .93 

Text Only Enterprising 1st Stage E3 .923 .88 .913 .88 

Text Only Conventional 1st Stage E4 .981 .78 .968 .78 

Text and KSA/GWA  Realistic 2nd Stage E .807 .93 .789 .93 

Text and KSA/GWA Investigative 1st Stage E11 .940 .88 .935 .88 

Text and KSA/GWA Artistic 2nd Stage E .649 .91 .623 .92 

Text and KSA/GWA Social 1st Stage E18 .758 .93 .751 .93 

Text and KSA/GWA Enterprising 2nd Stage E .919 .88 .907 .88 

Text and KSA/GWA  Conventional 1st Stage 14 .953 .80 .935 .81 
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Step 3: Generating Preliminary OIPs and High-Point Codes 

Upon the conclusion of the model development and evaluation process above, we used the 
best-performing ensemble for each RIASEC dimension (identified in Table 2.17) to generate 
predicted RIASEC ratings (OIPs) for the 923 data-level occupations in the O*NET 27.1 
Database (i.e., the O*NET database that was most current as of this step in our development 
process, see O*NET Database Release Archives). Based on these ratings, we then assigned 
up to three high-point codes for each occupation using the following steps originally developed 
and defined by Rounds et al. (1999):  

1. Convert RIASEC ratings to proportions within each occupation. 

2. Assign initial high-point codes for each occupation, such that the RIASEC dimension 
with the highest proportion was assigned the 1st high-point position for the occupation, 
the RIASEC dimension with the 2nd highest proportion was assigned the 2nd high-point 
position for the occupation, and the RIASEC dimension with the 3rd highest proportion 
was assigned the 3rd high-point position for the occupation.13 

3. Retain only those high points for an occupation where the RIASEC dimension assigned 
to that high point had a proportion greater than .17 (i.e., a variable high-point code 
system). For example, if a third high-point code for an occupation listed a RIASEC 
dimension with a rating proportion of .15, no third high-point code was listed for that 
occupation. 

 
Note that OIPs and high-point codes assigned at this stage in the process were preliminary and 
were designed to reflect empirically optimal values based on the initial modeling work done in 
Step 2. We used these values to help identify occupations to target for sampling as part of the 
analyst and expert data collection conducted as part of this work (see Step 5). Specifically, we 
used these ratings to identify occupations where we had less certainty about the quality of 
prediction either because (a) the O*NET occupation had no published RIASEC rating in O*NET 
27.1 or (b) predictions made by the best-performing ensemble were discrepant from the 
RIASEC ratings of record in the 2008-2013 Dataset. Our process for identifying these 
occupations is discussed next in Step 4. 

 
  

 
13 Note, that Rounds et al. (1999) describe rules used for resolving ties among ratings for the top three RIASEC 
dimensions for purposes of assigning high-point codes. In the case of our predicted ratings, there were no ties for the 
top three RIASEC dimensions for any occupations, so no tie breaking rules were needed. 

https://www.onetcenter.org/db_releases.html
https://www.onetcenter.org/reports/OIP.html
https://www.onetcenter.org/reports/OIP.html
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Step 4: Identifying Occupations for Inclusion in Analyst-Expert Rating Data 
Collections 

As part of the current effort, we aimed to gather O*NET analyst and RIASEC expert ratings for a 
subset of the 923 data-level O*NET-SOCs to aid in further evaluation and refinement the 
prediction models developed based on the 2008-2013 Dataset. Our intent here was not to 
gather human ratings for all 923 data-level occupations but rather strategically target a subset of 
occupations where we had less certainty about the quality of the predicted ratings. A total of 269 
O*NET-SOC occupations were identified for inclusion in the data collection. Table 4.1 provides 
a summary of inclusion criteria and the number of occupations that met each criterion. Tables 
4.2 and 4.3 provide a comparison of the representativeness of the sample of 269 occupations 
relative to the full set of 923 data-level occupations in terms of job zone and job family 
representation.14 

The inclusion criteria shown in Table 4.1 are not mutually exclusive. They were implemented 
sequentially and reflect the research team’s aim to incrementally build up a set of occupations 
for human review. As Table 4.1 reveals, most of the criteria we implemented reflected different 
potential standards for agreement among machine-based (predicted) and human ratings that we 
considered to fill out the list of occupations (see Criteria 3 – 10). 

Table 4.1. Inclusion Criteria for O*NET-SOC Data Level Occupations in Analyst/Expert 
Data Collection 

Inclusion Criterion  
# of Occupations 
Included for this 

Criterion 

Cumulative # of 
Occupations 

Included 

1. Data-level occupation in O*NET 27.1 does not appear in the 
O*NET-SOC 2019 to O*NET-SOC 2010 crosswalk. 4 4 

2. Data-level occupation in O*NET 27.1 that does not have interest 
data in O*NET 27.1. 45 49 

3. Data-level occupation in O*NET 27.1 with a 1-to-1 crosswalk 
match to an O*NET-SOC 2010 occupation, AND that has more 
than two RIASEC dimensions that have predictions that fall 
outside the 95% standard error of measurement (SEM) based 
confidence interval around the published interest ratings.  

60 109 

4. Data-level occupation in O*NET 27.1 with a 1-to-1 crosswalk 
match to an O*NET-SOC 2010 occupation, AND that has two 
RIASEC dimensions that have predictions that fall outside the 95% 
standard error of measurement (SEM) based confidence interval 
around the published interest ratings, AND that has (a predicted-
observed profile correlation < .80 AND a predicted-observed 1st 
high-point code that does not match). 

12 120 

5. Data-level occupation in O*NET 27.1 with a 1-to-1 crosswalk 
match to an O*NET-SOC 2010 occupation, AND that has two 
RIASEC dimensions that have predictions that fall outside the 95% 
standard error of measurement (SEM) based confidence interval 
around the published interest ratings, AND that has (a predicted-
observed profile correlation < .80 OR a predicted-observed 1st 
high-point code that does not match). 

48  156 

 
14 O*NET Job Zones group occupations into one of five categories based on levels of education, experience, and 
training necessary to perform the occupation (Rivkin & Craven, 2021). 

https://www.onetcenter.org/taxonomy/2019/walk.html
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Table 4.1. (Continued) 

Inclusion Criterion  
# of Occupations 
Included for this 

Criterion 

Cumulative # of 
Occupations 

Included 

6. Data-level occupation in O*NET 27.1 with a 1-to-1 crosswalk 
match to an O*NET-SOC 2010 occupation, AND that has two or 
more RIASEC dimensions that have predictions that fall outside 
the 99% standard error of measurement (SEM) based confidence 
interval around the published interest ratings. 

77 178 

7. Data-level occupation in O*NET 27.1 with a 1-to-1 crosswalk 
match to an O*NET-SOC 2010 occupation, AND that has (a 
predicted-observed profile correlation < .80 AND a predicted-
observed 1st high-point code that does not match). 

25 180 

8. Data-level occupation in O*NET 27.1 with a 1-to-1 crosswalk 
match to an O*NET-SOC 2010 occupation, AND that has a 
predicted-observed profile correlation < .80. 

42 182 

9. Data-level occupation in O*NET 27.1 with a 1-to-1 crosswalk 
match to an O*NET-SOC 2010 occupation, AND that has one 
RIASEC dimension that has predictions that fall outside the 99% 
standard error of measurement (SEM) based confidence interval 
around the published interest ratings, AND a predicted-observed 
1st high-point code that does not match. 

47 205 

10. Data-level occupation in O*NET 27.1 with more than one 
crosswalk match to an O*NET-SOC 2010 occupation, AND that 
has more than one RIASEC dimension that has predictions that 
fall outside the 95% standard error of measurement (SEM) based 
confidence interval around the published interest ratings. 

64 269 

Note. Inclusion criteria are not mutually exclusive and were implemented sequentially. The Cumulative # of 
Occupations Included column reflects the cumulative number of occupations selected for inclusion upon 
implementing the given criterion. 
 
Comparison of occupations for inclusion in the analyst-expert rating data collections relative to 
the full set of 923 data-level O*NET-SOCs revealed good coverage of all O*NET job zones and 
job families. For example, Table 4.2 shows that occupations selected for inclusion in the data 
collection were generally comparable in terms of their distribution across job zones relative to 
the full set of 923 occupations, with slightly less representation of job zone two occupations, and 
slightly more representation of job zone three and four occupations. Similarly, Table 4.3 shows 
that occupations selected for inclusion in the data collection were generally comparable in terms 
of their distribution across job families, with slightly less representation of Production 
occupations and slightly more representation of Healthcare Practitioners and Technical 
occupations.  
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Table 4.2. Representativeness of Occupations Selected for Inclusion in the 
Analyst/Expert Data Collection with Respect to O*NET Job Zone 

Job Zone 

All O*NET 27.1 
Data-Level 

Occupations 
  

O*NET 27.1 Data 
Level Occupations 

Selected for Inclusion 
in 2023 Data 
Collection 

    

n %   n %   ∆%  
1: Little or no preparation needed 32 3.5  6 2.2  -1.2 

2: Some preparation needed 289 31.3  53 19.7  -11.6 

3: Medium preparation needed 220 23.8  76 28.3  4.4 

4: Considerable preparation needed 224 24.3  86 32.0  7.7 

5: Extensive preparation needed 158 17.1  48 17.8  0.7 

Total 923 100.0   269 100.0   0.0 
Note. ∆% = % of all O*NET 27.1 data-level occupations in the given job zone minus % of O*NET 27.1 data-level 
occupations selected for inclusion in the 2023 data collection. 
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Table 4.3. Representativeness of Occupations Selected for Inclusion in the 
Analyst/Expert Data Collection with Respect to Job Family 

Job Family 

All O*NET 
27.1 Data-

Level 
Occupations 

  

O*NET 27.1 Data 
Level Occupations 

Selected for 
Inclusion in 2023 

SME Data 
Collection 

    

n %  n %  ∆%  
Architecture and Engineering 56 6.1   14 5.2   -0.9 

Arts, Design, Entertainment, Sports, and Media 40 4.3  19 7.1  2.7 

Building and Grounds Cleaning and Maintenance 8 0.9  1 0.4  -0.5 

Business and Financial Operations 48 5.2  22 8.2  3.0 

Community and Social Service 14 1.5  2 0.7  -0.8 

Computer and Mathematical 36 3.9  20 7.4  3.5 

Construction and Extraction 61 6.6  8 3.0  -3.6 

Educational Instruction and Library 62 6.7  22 8.2  1.5 

Farming, Fishing, and Forestry 12 1.3  4 1.5  0.2 

Food Preparation and Serving Related 16 1.7  7 2.6  0.9 

Healthcare Practitioners and Technical 89 9.6  36 13.4  3.7 

Healthcare Support 19 2.1  3 1.1  -0.9 

Installation, Maintenance, and Repair 50 5.4  6 2.2  -3.2 

Legal 7 0.8  3 1.1  0.4 

Life, Physical, and Social Science 60 6.5  18 6.7  0.2 

Management 56 6.1  21 7.8  1.7 

Office and Administrative Support 51 5.5  6 2.2  -3.3 

Personal Care and Service 31 3.4  13 4.8  1.5 

Production 107 11.6  11 4.1  -7.5 

Protective Service 26 2.8  12 4.5  1.6 

Sales and Related 22 2.4  5 1.9  -0.5 

Transportation and Material Moving 52 5.6  16 5.9  0.3 

Total 923 100.0   269 100.0   0.0 

Note. ∆% = % of all O*NET 27.1 data-level occupations in the given job zone minus % of O*NET 27.1 data-level 
occupations selected for inclusion in the 2023 data collection in the given job zone. 
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Step 5: Collecting and Evaluating O*NET Analyst and Expert RIASEC 
Ratings 

HumRRO recruited sets of trained O*NET analysts, as well as academics with expertise in the 
study of vocational interests to provide RIASEC ratings for the 269 occupations identified in 
Step 4. The reason for obtaining ratings from separate groups of analysts and experts was 
motivated by a need to (a) evaluate whether using the existing cadre of O*NET analysts may 
provide a reliable and valid source of vocational interest ratings should the need arise in the 
future, and (b) obtain expert ratings to serve as criteria not only for evaluating O*NET analyst 
ratings but also in subsequent steps of our RIASEC modeling process that focused on 
evaluating the inclusion of new features that became available in O*NET post-2013 (i.e., 
features that were not available in the 2008-2023 Dataset used for modeling in Step 2, namely 
alternate titles, intermediate work activities, detailed work activities). 

Overview of Rater Recruitment and Training 

We recruited six O*NET analysts with several years of experience in the O*NET Data Collection 
Program who have provided skill and ability ratings for O*NET. We aimed to recruit analysts 
who (a) provided high-quality ratings in past data collection efforts, (b) came from a diverse 
range of demographic backgrounds, and (c) were timely in their provision of past ratings. 
Additionally, we recruited three academic experts who professionally study and publish on the 
topic of vocational interests to serve as our expert raters. Those individuals were Dr. James 
Rounds of the University of Illinois Urbana-Champaign’s Department of Psychology (our primary 
consultant on this effort), Dr. Rong Su of the University of Iowa’s Tippie College of Business, 
and Dr. Kevin Hoff of Michigan State University’s Department of Psychology.  

Rater Training 

Rater training involved the following activities: (a) providing an overview of the rating task, (b) 
describing Holland’s RIASEC model and how RIASEC interests are defined within O*NET, (c) 
introducing the scale on which RIASEC dimensions are rated in O*NET, (c) engaging in a 
RIASEC familiarization exercise, and (d) rating and discussing an initial subset of occupations 
for rater calibration purposes. In advance of training, HumRRO shared all training materials with 
Dr. Rounds for review, editing, and approval. HumRRO provided separate training for both 
groups of raters. For both groups of raters, the training process was comparable in terms of the 
substantive nature of training materials presented, with the exception of the length of 
instructional time for experts, which was reduced due to their substantial familiarity with 
RIASEC. 

During training, we provided raters with an overview of Holland’s RIASEC model and 
subsequently reviewed each RIASEC dimension in-depth. More specifically, HumRRO provided 
updated O*NET RIASEC definitions, keywords associated with a particular RIASEC dimension, 
and illustrative activities and occupations for each dimension (Rounds et al., 2023).  

To provide context for the rating task, we introduced raters to the two types of occupation-level 
interest data in O*NET: (a) Occupational Interest Profiles (OIPs) and (b) Interest high-point 
codes. Raters were informed the ratings they were making for OIPs are used to generate 
interest high-point codes for occupations. Since OIPs are dependent on the accuracy of raters, 
it was emphasized that reaching agreement was very important. HumRRO then provided an 
illustrative example of how RIASEC ratings for a given occupation result in OIPs, and relatedly, 
high-point codes. 
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Raters were informed they would be using the same interest ratings scale as the one originally 
used by Rounds et al. (1999) that asks, “How descriptive and characteristic is the given Holland 
work environment of this occupation?” where a rating of 1 is “Not at all characteristic,” and a 
rating of 7 is “Extremely characteristic” (see Figure 5.1).  

Figure 5.1. O*NET RIASEC Dimension Rating Scale 
 

 

 
Following the introduction of RIASEC and the different types of interest data in O*NET, we 
engaged in a RIASEC familiarization exercise with raters that attempted to get raters thinking 
about the relationship between RIASEC and occupational work environments. Appendix D 
provides instructions for exercise (see RIASEC Familiarization Exercise Instructions). 

Overview of Rating Process 

Upon completion of the training described above, we provided raters with materials to complete 
their RIASEC ratings for each occupation. These materials consisted of two Excel-based files: 
(a) an occupational information booklet and (b) a master ratings booklet. The occupational 
information booklet consisted of occupations along with their descriptions and tasks sorted by 
job family.15 Occupation descriptions and tasks were drawn from O*NET 27.1 – the latest 
available O*NET database at the time of the rater training. The tasks included for the majority of 
occupations (n = 221) reflected those considered “core” to the occupation by O*NET (i.e., 
relevance ≥ 67% and a mean importance rating ≥ 3.0) and were sorted in order of importance 
to that occupation. A limited number of occupations (n = 48) did not have relevance or 
importance ratings associated with their tasks in O*NET 27.1, so for those occupations, all tasks 
associated with that occupation were presented in alphabetical order. Raters were instructed to 
review all occupational information before making a RIASEC rating. Appendix D provides the 
instructions given to raters for making their ratings and an example of the rating sheet where 
they entered their ratings.  

The rating process consisted of three phases: 

(1) Initial calibration and group discussion: Raters first independently rated a subset of 
10 occupations. As noted above, this rating was done as part of the initial analyst and 
expert training session. The subset of occupations selected for this phase was designed 
to represent a diverse range of occupations and job families with respect to their 
standing on the RIASEC dimensions. After raters made their initial ratings for these 
occupations, we discussed the ratings as a group and discussed areas of disagreement 
to develop a clearer shared understanding of the RIASEC categories. Dr. Rounds 
participated in the calibration discussion with analysts and offered perspective when 
raters shared why they made certain occupation-RIASEC associations. Raters were 
permitted to independently update their initial ratings for the 10 occupations following the 
group discussion. 

 
15 The rationale behind sorting occupations by job family was to reduce cognitive load and help raters better see 
differences across occupations both between and within a job family. 
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(2) Follow-up calibration and group discussion: Following the initial calibration above, 
raters were assigned and independently rated another subset of occupations 
asynchronously. In this phase, analysts rated 50 more occupations, and experts rated 15 
more occupations. Once again, the subset of occupations selected for this phase was 
designed to represent a diverse range of occupations and job families with respect to 
their standing on the RIASEC dimensions. Following the raters’ submission of their 
ratings for this second subset of occupations, we conducted analyses to identify areas of 
disagreement. We first reviewed ratings from the experts, who were in unanimous 
agreement on the top three high-point codes for over half of the occupations they rated. 
HumRRO shared the agreement results with the experts and concluded that a second 
re-calibration meeting with them would not be needed. Next, we reviewed ratings from 
the analysts, who exhibited greater evidence of disagreement than the experts. Thus, we 
followed up with a group discussion session with the analyst to review their ratings. 

In preparation for the group discussion with analysts, we flagged occupations where 
there was greater disagreement among analysts on their RIASEC ratings and prioritized 
those for discussion. We also attended to any themes or patterns in ratings, especially 
those that seemed counterintuitive. For example, Conventional ratings tended to be 
consistently elevated across occupations and job families. When we subsequently 
discussed this observation with analysts, they shared the observation that a wide array 
of O*NET occupations’ core tasks concern activities such as recording, documenting, or 
reporting. More specifically, one rater argued that Social Workers would be a highly 
Conventional occupation considering the number of core Social Worker tasks that 
involve reporting, documenting, and maintaining client records. Additionally, raters 
indicated that post-secondary occupations, like “Atmospheric, Earth, Marine, and Space 
Sciences Teachers, Postsecondary” involve core task statements that rarely mention 
hard sciences and primarily focus on administrative aspects of the job like grading, 
maintaining student records, etc. As such, analysts tended to rate the Conventional 
dimension highly for several more socially oriented occupations. In light of this rating 
tendency, we sought guidance from Dr. Rounds, who provided the following advice on 
the matter: at lower grade levels, teaching is a social activity. As teachers move into 
higher grade levels and the objective of teaching is with respect to a school subject, the 
high-point codes generally begin with the educational subject taught (e.g., if the subject 
being taught is an art-related subject, the first high-point may be Artistic, whereas if the 
subject being taught is a science-related subject the high-point codes might begin with 
Investigative). As such, raters should consider the level at which a subject is being 
taught in making ratings. Additionally, although core task statements might include 
conventional-oriented activities, it is important to focus on the job descriptive information.  

HumRRO began the group discussion session by asking analysts to share their mental 
processes for making ratings, any gains in efficiencies learned, and challenges 
encountered while making ratings. Following that discussion, raters were re-trained on a 
reduced version of the original training slides, which paid particular focus on a RAISEC 
construct review and the input from Dr. Rounds, provided above. Following the group 
discussion, analysts were permitted to independently update their initial ratings for the 
occupations.  

(3) Independent rating of remaining occupations: Upon completion of the calibration 
phases above, raters were assigned and independently rated the remaining occupations 
(out of the full set of 269) they had yet to rate (209 for analysts, 244 for experts). All final 
ratings from analysts and experts were submitted to HumRRO by the end of May 2023.  
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Rating Data Review and Cleaning 

Once all final ratings were obtained from both groups of raters, we made several checks to 
ensure the information captured in individual rating workbooks was both accurate and complete. 
This involved ensuring each occupation-RIASEC had a rating and following up with individuals 
when incomplete. These checks also involved ensuring ratings were within the expected scale 
range (i.e., 1-7) for every occupation-RIASEC combination. We developed a master rating file 
with ratings from each group of raters. 

Given our plans to use the expert ratings as a standard for evaluating the analyst ratings, as 
well as for refining our RIASEC prediction models later in the project (see Step 6), we 
conducted an additional layer of screening and refinement on the expert ratings. In line with the 
procedure and rationale employed to refine the RIASEC ratings in the 2008-2013 Dataset in 
Step 1, we used the three rules developed in Step 1 for flagging the 1,614 occupation-RIASEC 
combinations (269 occupations x 6 RIASEC dimensions) where disagreement among the three 
experts who provided the ratings was considered meaningful: 

• Rule 1: Range across raters was greater than or equal to four (on a one-to-seven rating 
scale) AND if two of the experts were less than or equal to one rating point away from 
each other. Twenty-one out of 1,614 (1.3%) occupation-RIASEC combinations met this 
rule. The occupation-RIASEC combinations that met this rule spanned 19 of the 269 
(7.0%) occupations rated. 

• Rule 2: Range across raters was greater than or equal to four AND if two of the raters 
were greater than one rating point away from each other. Fourteen out of 1,614 (0.8%) 
occupation-RIASEC combinations met this rule. The occupation-RIASEC combinations 
that met this rule spanned 14 of the 269 (5.2%) occupations rated. 

• Rule 3: Range across raters was equal to three AND if two of the raters gave the same 
rating. Forty-seven out of 1,614 (2.9%) occupation-RIASEC combinations met this rule. 
The occupation-RIASEC combinations that met this rule spanned 43 of the 269 (15.9%) 
occupations rated. 

 
Based on the rules above, we made the following adjustments to expert RIASEC ratings before 
further analyses: 

• Trimmed means (or exact value, if same) were used in instances where an occupation-
RIASEC combination was flagged for Rule 1, where the outlying rater’s rating was 
removed prior to calculating the trimmed mean. 

• The expert ratings from Dr. Rounds were used in instances where an occupation-
RIASEC was flagged for Rule 2. 

• The modal (i.e., agree upon) rating was used in instances where an occupation-RIASEC 
combination was flagged for Rule 3. 

 
Note that if an occupation-RIASEC combination was not flagged based on one of the rules 
above, the mean rating across the three experts was used as the final rating for a given 
RIASEC dimension. For analysts, the mean rating across the six analysts was used as the final 
rating for a given RIASEC dimension. 
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Evaluation of Ratings 

We first calculated descriptive statistics for the analyst and cleaned expert RIASEC ratings and 
examined standardized within-occupation differences between analysts and cleaned expert 
ratings. Next, we examined the reliability of RIASEC dimension ratings as well as the reliability 
(i.e., consistency) and absolute agreement (i.e., interchangeability) of RIASEC rating profiles 
furnished by analysts and experts, respectively. Lastly, we examined analyst and expert 
RIASEC ratings through a multitrait-multimethod correlation lens to evaluate patterns of 
convergence and discrimination among ratings. Except where noted below, all of the analyses 
above were conducted on post-calibration ratings and, for experts, post-refinement via the 
previously described data cleaning rules. 

Basic Descriptives and Mean Differences 

Table 5.1 presents descriptive summaries for each RIASEC dimension by rating source (i.e., 
analyst, expert). For analysts and experts, the highest means were observed for Conventional 
interests, and the lowest means were for Artistic interests. 

Table 5.1. Descriptive Statistics for RIASEC Dimensions by Rater Type 

Dimension 
M SD 5th Percentile 95th Percentile 

Analyst Expert Analyst Expert Analyst Expert Analyst Expert 

Realistic 3.17 4.11 1.76 1.88 1.00 1.00 6.17 6.67 

Investigative 3.29 3.60 1.52 1.81 1.17 1.00 5.50 6.00 

Artistic 1.83 2.04 1.31 1.47 1.00 1.00 4.00 4.40 

Social  3.96 3.29 1.25 1.62 2.00 1.13 5.67 6.00 

Enterprising 3.84 3.21 1.27 1.72 2.07 1.00 5.83 6.00 

Conventional 4.57 4.60 1.07 1.14 2.83 3.00 6.17 6.33 

Note. N = 269. Ratings were made on a 7-point scale ranging from 1 (not at all characteristic) to 7 (extremely 
characteristic). 
 
In addition to computing basic descriptives, we also computed within-occupation standardized 
mean differences between analyst and expert ratings. For any given RIASEC dimension, these 
standardized mean differences are calculated by first taking the difference between analyst and 
expert ratings for each occupation (analyst – expert), then calculating the mean difference and 
standard deviation of differences across occupations. The mean difference is then divided by 
the standard deviation of differences to arrive at the within-occupation standardized mean 
differences that are reported in Table 5.2. 
 
Table 5.2 illustrates that analysts tended to rate Social interests and Enterprising interests 
moderately higher than experts (as indicated by positive within-occupation differences in the .70 
range) and that experts tended to rate Realistic interests moderately higher than analysts (as 
indicated by negative within-occupation differences of -.89). Differences between analysts and 
experts with respect to ratings of Investigative, Artistic, and Conventional instruments appeared 
small to negligible. 
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Table 5.2. Within-Occupation Standardized Mean Differences between Rater Types 
RIASEC Analyst-Expert 
Realistic -.89 

Investigative -.29 

Artistic -.27 

Social .78 

Enterprising .67 

Conventional -.03 
Note. N = 269. 

Reliability and Agreement 

Next, we examined the reliability (i.e., consistency) and absolute agreement (i.e., 
interchangeability) of the analyst and expert RIASEC ratings. For these analyses, we examined 
post-calibration ratings and, for experts, pre-refinement via the previously described data 
cleaning rules. Table 5.3 shows the interrater reliability and agreement estimates for each 
RIASEC dimension. Two pairs of reliability and agreement coefficients are provided for each 
rater type. ICC(C,1) reflects the estimated reliability of a single-rater’s rating for the given 
RIASEC dimension (among raters of a given type). Effectively, ICC(C,1) is comparable to the 
expected correlation one would expect to see between two different raters selected at random. 
ICC(C,k) reflects the estimated reliability of the mean rating for a given RIASEC dimension 
(across k raters of a given type). Effectively, ICC(C,k) is comparable to the expected correlation 
one would expect to see between mean ratings provided by two randomly selected groups of k 
raters. In the case of analysts, the number of raters (k) equals six, and in the case of experts, 
the number of raters (k) equals three. Similarly, ICC(A,1) reflects the estimated absolute 
agreement of a single-rater’s rating for the given RIASEC dimension (among raters of a given 
type). ICC(A,k) reflects the estimated absolute agreement of the mean rating for a given 
RIASEC dimension (across k raters of a given type). 

Of prime interest in Table 5.3 are the ICC(C,6) and ICC(C,3) values for analysts and experts, 
respectively, as these reflect the reliability of the mean ratings – which would serve as the actual 
ratings for each RIASEC dimension. Focusing on these values, we see that ICC(C,6) values for 
analysts range from .80 (Conventional) to .92 (Artistic), and ICC(C,3) for experts ranged from 
.74 (Conventional) to .94 (Artistic). All of these values indicate acceptable levels of interrater 
reliability but are slightly lower than the levels of interrater reliability for the mean expert ratings 
in the 2008-2013 Dataset summarized in Step 2. Recall from Table 2.6 that for RIASEC ratings 
in the 2008-2013 Dataset, ICC(C,3) values for experts ranged from .84 (Conventional) to .95 
(Realistic, Social). Not surprisingly, if one compares the ICC(C,1) values for analysts and expert 
ratings, the ICC(C,1) values for experts are notably higher. This was expected given that we 
would expect the correlation between RIASEC ratings of any two experienced experts selected 
randomly to be more highly correlated than the correlation between RIASEC ratings of any two 
less experienced analysts selected at random. Thus, to offset that greater level of consistency 
among analysts, one must sample more analysts than experts to achieve mean RIASEC ratings 
that are comparable in their reliability across rater types. 
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Table 5.3. Interrater Reliability and Agreement for RIASEC Dimensions by Rater Type 

Dimension 
Analyst Expert 

ICC(C,1) ICC(C,6) ICC(A,1) ICC(A,6) ICC(C,1) ICC(C,3) ICC(A,1) ICC(A,3) 
Realistic .63 .91 .58 .89 .82 .93 .82 .93 
Investigative .61 .90 .50 .86 .78 .91 .77 .91 
Artistic .67 .92 .64 .91 .83 .94 .83 .94 
Social .50 .86 .45 .83 .77 .91 .75 .90 
Enterprising .45 .83 .43 .82 .77 .91 .77 .91 
Conventional .41 .80 .38 .79 .49 .74 .43 .70 

Note. N = 269. 
 
Beyond the reliability of ratings for the individual RIASEC dimensions, we also examined the 
reliability (i.e., consistency) and absolute agreement (i.e., interchangeability) of the within-
occupation RIASEC profiles for the analyst and expert raters. In contrast to the reliability and 
agreement statistics for each dimension where occupations serve as the target of 
measurement, here our focus is on reliability and agreement for each of the 269 occupations 
where RIASEC dimensions serve as the target of measurement, that is, we address how 
consistent raters are in terms of their ordering of RIASEC dimensions for any given occupation. 
Table 5.4 shows the results of our analyses. Specifically, it provides descriptive statistics 
summarizing ICC statistics calculated for each of the 269 occupations. As with the findings 
above, the mean RIASEC profiles provided by both analysts and experts exhibit good levels of 
reliability (Analyst ICC(C,6) = .88, Expert ICC(C,3) = .91), with the 5th percentile of these 
ICC(C,k) values for both rater types both exceeding .70. 

Table 5.4. Reliability and Agreement for RIASEC Profiles by Rater Type 

Statistic 
Analyst Expert 

ICC(C,1) ICC(C,6) ICC(A,1) ICC(A,6) ICC(C,1) ICC(C,3) ICC(A,1) ICC(A,3) 
Mean .61 .88 .61 .88 .80 .91 .80 .91 
SD .17 .11 .17 .11 .13 .08 .13 .07 
Min .01 .07 .02 .08 .16 .36 .17 .38 
Max .89 .98 .89 .98 .98 .99 .98 .99 

Percentiles         

5th .30 .72 .31 .72 .56 .79 .56 .80 
10th .40 .80 .40 .80 .62 .83 .64 .84 
20th .47 .84 .48 .85 .70 .87 .71 .88 
30th .52 .87 .53 .87 .75 .89 .76 .90 
40th .58 .89 .58 .89 .79 .92 .79 .92 
50th .63 .91 .63 .91 .83 .94 .83 .93 
60th .68 .93 .68 .93 .85 .95 .85 .95 
70th .72 .94 .71 .94 .88 .96 .87 .95 
80th .77 .95 .76 .95 .90 .97 .90 .96 
90th .82 .96 .80 .96 .93 .98 .93 .97 
95th .85 .97 .83 .97 .95 .98 .94 .98 

Note. N = 269. 
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Convergence among Rater Types 

Lastly, we examined analyst and expert RIASEC ratings through a multitrait-multimethod 
correlation lens to evaluate patterns of convergence and discrimination among ratings. The 
purpose of doing so was to evaluate evidence of convergent and discriminant validity for the 
ratings (Campbell & Fiske, 1959). Table 5.5 provides correlations among analyst and expert 
RIASEC ratings.  

Convergent validity is indicated by high correlation among the same RIASEC dimension as 
rated by analysts and experts (i.e., monotrait-heteromethod correlations, highlighted in yellow in 
Table 5.5). Table 5.5 shows strong evidence of convergence as monotrait-heteromethod 
correlations for all RIASEC dimensions all exceed .80 except for Conventional interests (r = 
.61). Note that when interpreting the analyst-expert correlation for Conventional interests, it is 
important to remember that this interest was the least reliably measured among both analysts 
and experts. When we correct this correlation for unreliability in analyst and expert ratings using 
the ICC(C,6) (analyst) and ICC(C,6) (expert) values for Conventional interests in Table 5.3, it 
increases to a corrected value of .71.  

Discriminant validity and freedom from “common method” variance are indicated by relatively 
low correlations among different RIASEC dimensions that share a rater type in common (i.e., 
heterotrait-monomethod correlations, highlighted in blue in Table 5.5) and that don’t clearly 
exceed the correlations among different RIASEC dimensions that don’t share a rater type (i.e., 
heterotrait-heteromethod correlations, highlighted in green in Table 5.5). The pattern of results 
in Table 5.5 provides evidence of discriminant validity and little evidence of common method 
variance. Specifically, the average heterotrait-monomethod correlation among analyst ratings 
was -.13, the average heterotrait-monomethod correlation among expert ratings was -.11, and 
the average heterotrait-heteromethod correlation was -.10. The average heterotrait-
monomethod correlations for both analysts and experts were also comparable to the average 
heterotrait-monomethod correlations calculated among the interest ratings in O*NET 27.1. 
Specifically, the average correlation among interest dimensions in O*NET 27.1 is -.12 (N = 874). 
Thus, the results here are quite comparable to what we’d expect based on the full set of 
occupations on which the current sample of 269 is based. 

Table 5.5. Multitrait-Multimethod Correlations for RIASEC Dimensions by Rater Type 
  Analyst Expert 
  R I A S E C R I A S E C 

Analyst 

R 1.00 
           

I -.26 1.00 
          

A -.04 -.39 1.00 
         

S -.49 -.02 .16 1.00 
        

E -.35 -.26 .00 -.02 1.00 
       

C -.49 .31 -.33 -.12 .31 1.00 
      

Expert 

R .84 -.06 -.09 -.35 -.44 -.47 1.00 
     

I -.37 .81 -.19 .04 -.10 .44 -.17 1.00 
    

A -.18 -.25 .85 .14 .12 -.20 -.24 -.03 1.00 
   

S -.43 .08 .14 .85 -.09 -.06 -.36 .16 .13 1.00 
  

E -.35 -.24 .02 .18 .85 .19 -.45 -.14 .10 .07 1.00 
 

C -.26 .20 -.34 -.29 .12 .61 -.25 .14 -.32 -.33 .00 1.00 
Note. N = 269. Monotrait-heteromethod correlations are highlighted in yellow. Heterotrait-monomethod correlations 
are highlighted in blue. Heterotrait-heteromethod correlations are highlighted in green.  
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Step 6: Refining and Evaluating Final RIASEC Prediction Models for Future 
Use 

Our model-building effort in Step 2 focused on understanding which models tended to work best 
from the perspective of maximizing the prediction of RIASEC ratings based on data available in 
the 2008-2013 Dataset. In this step, we shifted our focus to identifying a model for each 
RIASEC dimension that balanced predictive value with parsimony, then evaluated whether we 
could improve that model through the introduction of additional features that became available 
in O*NET post-2013. Specifically, the models we developed in Step 2 were limited to feature 
sets that were available in the O*NET Database in the 2008 to 2013 timeframe. Additional 
sources of features were added in later years; specifically, Detailed Work Activities (DWAs) and 
Intermediate Work Activities (IWAs) were introduced in the O*NET 18.1 Database (March 
2014), and Alternate Titles (ATs) were introduced in the O*NET 20.1 Database (October 2015). 
Thus, as part of the current step, we first aimed to identify a model from Step 2 that balanced 
prediction with practical implementation considerations and then used that model as a baseline 
in this step to see if adding DWA, IWA, or AT-based features could increase its level of 
prediction. 

Identifying a Baseline Model that Balances Prediction and Practical 
Considerations 

Our first step was to review the modeling results from Step 2 and identify a model that provided 
good levels of prediction yet also satisfied practical implementation considerations. The practical 
factors we considered were: (a) the inputs to the model would always be available upon an 
occupation’s introduction to O*NET (e.g., an occupation’s title, description, and task statements 
are always available when a new occupation is introduced to O*NET, but knowledge, skill, 
ability, and GWA ratings are not), and (b) the model did not add additional layers of complexity 
unless it resulted in notable gains in prediction. Based on our review and after consultation with 
Dr. Rounds, we recommended the Center adopt Ensemble 1 as the baseline model of choice 
for each RIASEC dimension. Recall from Step 2, Ensemble 1 reflected a linear combination of 
predictions from four models defined by the following features (a) SBERT embeddings of an 
occupation’s title (Model 3), (b) SBERT embeddings of an occupation’s description (Model 4) (c) 
SBERT embeddings of an occupation’s tasks (Model 5), and (d) SBERT embeddings of the 
concatenation of an occupation’s title, description, and tasks (Model 2). The advantages we saw 
in Ensemble 1 included the following:  

• It offered levels of prediction for each RIASEC prediction that nearly matched the level of 
prediction afforded by the best-performing ensembles for each RIASEC dimension 
identified in Step 2 (see Table 6.1), 

• It was based on information that would be available upon a new occupation’s 
introduction to O*NET (thus allowing that occupation to be nearly instantly profiled on 
RIASEC upon its addition to the O*NET database).  

• It was simple in that it was fully based on SBERT embeddings of three simple elements 
of O*NET occupational text: title, description, and tasks.  

 
Using Ensemble 1 as our new baseline, we proceeded to evaluate whether adding in new AT, 
DWA, and/or IWA features could improve predictions. 
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Table 6.1. Test Set Cross-Validated R for Ensemble 1 vs. Best Ensembles from Step 2 for 
Each RIASEC Dimension 

Ensemble 
Cross-Validated R in Testing Data 

 
M   R I A S E C  

Ensemble 1 .87   .92 .86 .88 .92 .87 .76  

Best Ensemble Step 2 - Text Only .88   .92 .86 .88 .93 .88 .78  

Best Ensemble Step 2 - Text & KSA/GWA .89   .93 .88 .91 .93 .88 .80  

Note. M = Average cross-validated R across RIASEC dimensions. Ensemble 1 cross-validated R values are drawn 
from Table 2.8. Best Ensemble Step 2 cross-validated R values are drawn from Table 2.15 (unbounded predictions). 
R values are shaded along a green-red color gradient to facilitate interpretation (higher values—indicating better 
ensemble performance—are shaded green; lower values—indicating poorer ensemble performance—are shaded 
red). 

Developing Models that Consider AT, DWA, and IWA Features 

Our first step in model development involved creating features for ATs, DWAs, and IWAs to add 
to Ensemble 1-based predictions. Like the text-based features in Step 2, all the features we 
used in this stage of our modeling analyses were SBERT embeddings we computed using the 
“nli-distilroberta-base-v2” model via the “SentenceTransformers” Python library (Reimers & 
Gurevych, 2019). We computed an SBERT embedding for each AT, DWA, and IWA from each 
occupation, then averaged the embeddings for each input text type within each O*NET-SOC. 
For each O*NET-SOC, we aggregated the SBERT embeddings for individual sentence- or 
phrase-like text into three vectors of average embeddings: one each for ATs, DWAs, and IWAs. 

Modeling Procedure 

Whereas in Step 2 of our research process, we had a total of 974 O*NET-SOCs in our analysis 
sample, our analysis sample for this phase of modeling only consisted of the 269 O*NET-SOCs 
for which new expert ratings were gathered as part of Step 5. This reduction in sample size 
required a different strategy for model training and cross-validation than we used in Step 2, as 
we did not have enough cases to (a) retrain Ensemble 1 on the new data, nor (b) support a 
robust cross-validation strategy based on the previous approach. If we had repeated the 
analysis procedures we established in Step 2 and used 75% of cases as a training sample and 
the remaining 25% as a testing sample, we would have had 202 occupations in our training 
sample and only 67 in our testing sample. Dividing a relatively small sample in this way would 
result in cross-validated fit estimates impacted by substantially more sampling error than in Step 
2, making it much more difficult to identify the best-performing model configurations with a 
reasonable degree of certainty. 

We made two changes to our modeling strategy in light of the more limited sample sizes 
referenced above. First, given that we were not in a position to retrain Ensemble 1 on the new 
set of data, we instead focused on whether we could use AT, DWA, and/or IWA features to 
predict the residuals that would result from applying Ensemble 1 (developed in Step 2) to predict 
the expert RIASEC ratings for the 269 occupations of interest in this step. Under this strategy, 
the final model for any given RIASEC dimension would reflect a simple sum of (a) the Ensemble 
1 prediction and (b) a residual prediction based on a model consisting of AT, DWA, and/or IWA-
based features. Effectively, the Ensemble 1 parameter estimates were treated as fixed in this 
step, and the only new parameters that were being estimated were those for the residual 
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prediction models we examined. Treating Ensemble 1 parameter estimates as fixed puts far 
less demand on the limited sample size available for modeling in this step. 

Beyond adopting the residual modeling strategy above, we also changed our sample splitting 
strategy to make the most use of the 269 occupations available for modeling while still following 
a prudent cross-validation strategy that properly maintained the independence of training and 
testing data. Namely, we adopted a nested k-fold cross-validation design. We describe this 
strategy and its implications for the model development process next. 

Sample Splitting, Hyperparameter Tuning, and Cross-Validation 

Regular k-fold cross-validation involves splitting a data set into roughly equal subsamples and 
systematically setting aside each subsample as a holdout sample on which to evaluate a model 
trained using the other k-1 subsamples. This is the process we applied to our training sample in 
Step 2 when we tuned hyperparameters; in that design, we also set aside a true holdout sample 
that we did not analyze until the final stage of model selection. Nested k-fold cross-validation 
adds another layer or “loop” of iteration, such that the design involves both an outer loop and an 
inner loop of cross-validation analyses. The outer loop of this design is analogous to a regular k-
fold design, where a holdout sample is defined in each iteration of the analysis and is used to 
evaluate out-of-sample model performance. The inner loop of this design is where 
hyperparameter tuning takes place during each iteration of the outer loop: each of the k-1 folds 
of the training sample defined by the outer loop is treated as a holdout sample for evaluating 
hyperparameter performance. Once the inner loop hyperparameter tuning analyses are 
complete for a given iteration of the outer loop, the best-performing parameters are used to train 
a model on the full training subsample (all k-1 folds together), and that model is evaluated on 
the holdout sample defined by the outer loop. The analysis process requires completing a cycle 
of hyperparameter tuning analyses in the inner loop for each iteration of the outer loop. 

To make this design more concrete, Table 6.2 shows how a 5-fold nested cross-validation 
analysis functions; this is the design we used in the current phase of modeling. In each outer-
loop iteration of the analysis, the goal is to use one subsample of data to cross-validate a model 
trained on the other k-1 subsamples. However, since the model to be cross-validated in the 
outer iteration requires hyperparameter tuning, the inner loop involves subdividing the outer 
iteration’s training sample and performing a separate (k-1)-fold cross-validation on that sample 
to identify the best-performing hyperparameters. Selecting hyperparameters through cross-
validation within the inner loop reserves the outer-loop test sample for evaluation of the final 
model and prevents contaminating the hyperparameter selection process (or the process of 
comparing machine learning methods applied to the same feature set) with decisions informed 
by the test data. Thus, the total number of iterations for the outer and inner loops of a nested 
cross-validation analysis is k×(k-1) (i.e., for a 5-fold design, there are 20 total iterations). By 
using an outer loop of holdout sample analyses rather than establishing a single holdout sample 
(as we did in our first round of model development research), we made full use of the available 
data when estimating out-of-sample performance while still maintaining independence of 
training and test data in each cross-validation analysis. 

Table 6.3 shows the sample sizes for all folds of our analysis sample after applying the design 
shown in Table 6.2, and Table 6.4 shows how job families were represented in each fold of data 
from that design. 
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Table 6.2. Five-Fold Nested Cross-Validation Design 

Model Cross-Validation (Outer Loop) 
Overall 
Iteration 

# 

Hyperparameter Tuning (Inner Loop) 

Outer 
Loop 

Analysis 
Iteration # 

Outer Loop 
Training 

Subsample 
#s 

Outer Loop 
Test 

Subsample # 

Inner Loop 
Analysis 

Iteration # 

Inner Loop 
Training 

Subsample 
#s 

Inner Loop 
Test 

Subsample # 

1 2, 3, 4, 5 1 

1 1 3, 4, 5 2 
2 2 2, 4, 5 3 
3 3 2, 3, 5 4 
4 4 2, 3, 4 5 

2 1, 3, 4, 5 2 

5 1 3, 4, 5 1 
6 2 1, 4, 5 3 
7 3 1, 3, 5 4 
8 4 1, 3, 4 5 

3 1, 2, 4, 5 3 

9 1 2, 4, 5 1 
10 2 1, 4, 5 2 
11 3 1, 2, 5 4 
12 4 1, 2, 4 5 

4 1, 2, 3, 5 4 

13 1 2, 3, 5 1 
14 2 1, 3, 5 2 
15 3 1, 2, 5 3 
16 4 1, 2, 3 5 

5 1, 2, 3, 4 5 

17 1 2, 3, 4 1 
18 2 1, 3, 4 2 
19 3 1, 2, 4 3 
20 4 1, 2, 3 4 

 

Table 6.3. Sample Breakdown for 5-Fold Nested Cross-Validation 

Outer Fold # Holdout Sample Size 
(% of Sample) 

Total Training Sample size 
(Size by Inner-Loop Fold) 

1 55 (20.4%) 214 (54 / 54 / 53 / 53) 

2 54 (20.1%) 215 (55 / 54 / 53 / 53) 

3 54 (20.1%) 215 (55 / 54 / 53 / 53) 

4 53 (19.7%) 216 (55 / 54 / 54 / 53) 

5 53 (19.7%) 216 (55 / 54 / 54 / 53) 

Note. Total sample size = 269 O*NET-SOCs. 
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Table 6.4. Sample Sizes for Job Families Across Data Segments 

Job Family 
Outer Loop Folds Inner Loop 

All 1 2 3 4 5 Training 
Samples Folds 

11 Management  21 4 4 4 5 4 16 – 17 4 – 5 

13 Business and Financial Operations  22 4 5 5 4 4 17 – 18 4 – 5 

15 Computer and Mathematical  20 4 4 4 4 4 16 – 16 4 – 4 

17 Architecture and Engineering  14 3 3 3 2 3 11 – 12 2 – 3 

19 Life, Physical, and Social Science  18 4 4 3 4 3 14 – 15 3 – 4 

21 Community and Social Service  2 1 0 0 0 1 1 – 2 0 – 1 

23 Legal  3 1 1 1 0 0 2 – 3 0 – 1 

25 Educational Instruction and Library  22 5 4 4 4 5 17 – 18 4 – 5 

27 Arts, Design, Entertainment, Sports, 
and Media  19 4 4 3 4 4 15 – 16 3 – 4 

29 Healthcare Practitioners and Technical  36 7 7 8 7 7 28 – 29 7 – 8 

31 Healthcare Support  3 0 0 1 1 1 2 – 3 0 – 1 

33 Protective Service  12 2 3 2 2 3 9 – 10 2 – 3 

35 Food Preparation and Serving Related  7 2 1 1 2 1 5 – 6 1 – 2 

37 Building and Grounds Cleaning and 
Maintenance  1 1 0 0 0 0 0 – 1 0 – 1 

39 Personal Care and Service  13 2 3 3 3 2 10 – 11 2 – 3 

41 Sales and Related  5 1 1 1 1 1 4 – 4 1 – 1 

43 Office and Administrative Support  6 1 1 2 1 1 4 – 5 1 – 2 

45 Farming, Fishing, and Forestry  4 1 1 0 1 1 3 – 4 0 – 1 

47 Construction and Extraction  8 2 1 2 2 1 6 – 7 1 – 2 

49 Installation, Maintenance, and Repair  6 1 1 1 1 2 4 – 5 1 – 2 

51 Production  11 2 2 3 2 2 8 – 9 2 – 3 

53 Transportation and Material Moving  16 3 4 3 3 3 12 – 13 3 – 4 

  Total 269 55 54 54 53 53 214 – 216 53 – 
55 

Note. The number preceding the job family is the first two digits of the O*NET-SOC 2019 code corresponding to that 
job family. 
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Residual Model Specifications 

We trained our models in two stages that closely resembled the first two modeling stages from 
Step 2. First, we trained an initial set of three models for each RIASEC dimension according to 
the specifications in Table 6.5, such that each RIASEC dimension was predicted by separate 
models based on embeddings from ATs, DWAs, and IWAs, respectively. As noted earlier, in 
each model, we defined the outcome variable as the residuals obtained from applying Ensemble 
1 to the sample of expert ratings collected in Step 5. In other words, the outcome to be 
predicted for each RIASEC dimension at this stage of our analyses was the difference between 
the expert ratings and Ensemble 1 predictions.  

Table 6.5. Summary of Residual Models to be Trained for Each RIASEC Dimension 

Residual 
Model Description 

Regression 
Methods 

Evaluated 
# of 

Features Feature Type 

RM1 Alternate Title SBERT 
Embeddings SPLS, EN 768 Alternate Titles 

RM2 DWA SBERT Embeddings SPLS, EN 768 Detailed Work Activities 

RM3 IWA SBERT Embeddings SPLS, EN 768 Intermediate Work 
Activities 

Note. SPLS = Sparse partial least squares regression. EN = Elastic net regression. # of Features = Number of 
features initially input into the models. SPLS and EN perform variable selection, so the number of features in the final 
fitted model may be less than the starting number of features initially inputted into the model. 
 
For each training sample in the outer loop of our nested k-fold design, we tuned the 
hyperparameters for elastic net (EN) regression and sparse partial least squares (SPLS) 
regression models for predicting each RIASEC dimension’s residuals from each of the three 
feature sets. We used a grid search hyperparameter tuning strategy with the same sets of 
candidate hyperparameter values as we established in Step 2. 

Due to our use of a nested k-fold design, each combination of RIASEC dimensions and feature 
sets resulted in five sets of tuned hyperparameters per machine learning method (because each 
outer loop of our analysis design involved its own hyperparameter tuning process). For this 
design to produce a final model configuration for each RIASEC dimension and feature set 
combination, we selected a best-performing method for each analysis based on a vote-counting 
procedure. For example, if EN regression performed the best in three or more outer folds for a 
given RIASEC dimension and feature set combination, we considered it the best-bet method for 
that dimension and feature set; likewise, for SPLS. According to this vote-counting method, EN 
regression was the best-performing method in 14 out of the 18 RIASEC dimension and feature 
set combinations. We examined the four instances in which SPLS tended to outperform EN and 
determined that the advantage gained by using SPLS was truly trivial (the average RMSE 
values across hyperparameter tuning holdout folds were larger for EN than SPLS by 
magnitudes ranging from .0005 to .0087). Thus, for the sake of parsimony, we chose to use EN 
as our machine-learning method for all initial models.  

Residual Ensemble Specifications 

For each EN model we trained on each RIASEC dimension’s residuals in each outer loop of our 
nested k-fold design, and we computed predictions for all 269 O*NET-SOCs in our analysis 
sample. Then, for each RIASEC dimension, we organized the predictions from the AT, DWA, 
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and IWA models estimated using the same training sample into a data set and trained an 
ensemble OLS regression model using the AT, DWA, and IWA model predictions as inputs. 
This analysis approach ensured that all the features used to train in our ensemble models were 
produced by initial models trained on the same sample of O*NET-SOCs as the ensemble, thus 
maintaining the independence of all testing and training data segments at all stages of model 
training. 

Cross-Validation and Final Model Fitting 

Within each outer loop of the nested K-fold design, we trained a residual model on the full 
training set using the best-functioning set of hyperparameters (if applicable) and evaluated the 
fit of the model in the corresponding test set. We then averaged the test-set fit metrics across 
outer-loop analyses for each combination of RIASEC dimensions and feature sets to determine 
the overall fit of residual models from each instance of the nested k-fold analysis. 

After identifying the best model/ensemble type to use to predict residuals for each RIASEC 
dimension, we retrained those models on the full sample of 269 O*NET-SOCs using each outer-
loop analysis’s best hyperparameter values. For each RIASEC dimension, we then averaged 
the coefficients for the fully trained residual model/ensemble across outer loop analyses to 
arrive at a final overall set of coefficients for the RIASEC dimension’s best-functioning residual 
model/ensemble. We then took predictions for those models, added them to the Ensemble 1 
predictions, and bounded them by the 1-7 rating metric to arrive at final overall predictions for 
each RIASEC dimension. 

Evaluation of Residual Models and Ensemble 

As noted earlier, we experimented with elastic net (EN) regularized regression and sparse 
partial least squares (SPLS) regression to train our residual models based on aggregated 
embeddings for ATs, DWAs, and IWAs but, ultimately, we ended up using EN regression for all 
initial models due to its dominant performance during the hyperparameter tuning process. The 
hyperparameter values for each EN model are summarized in Table E.1 in Appendix E. We also 
developed a single OLS regression ensemble model for each RIASEC dimension trained using 
the predictions from the dimension’s AT-, DWA-, and IWA-based residual models. 

As in Step 2, we evaluated model fit using root mean squared error (RMSE) and multiple R 
metrics but only made decisions based on RMSE results because that metric is sensitive to both 
the strength of linear associations and the correspondence in scale between the target outcome 
values and model predictions. Tables 6.6 and 6.7 show RMSE and multiple R statistics for the 
three residual models and one residual ensemble we evaluated.  

Overall, we found the residual ratings were indeed predictable with a reasonable degree of 
accuracy, given that the outcome variables in these analyses represented variance that was 
unaccounted for by Ensemble 1 from Step 2. The average correlation between predicted 
residuals and observed residuals (i.e., the criterion being modeled) across test set holdout folds 
hovered in the mid-.4 to .50 range for Realistic and Social interests across models and ranged 
from high-.3s to high-.4s for Conventional interests. The average holdout correlations were 
lower for Investigative (high-.2s to high-.3s), Artistic (high-.3s), and Enterprising (mid-.3s to low-
.4s) interests.  
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Table 6.6. Cross-Validated RMSE Results for Residual Models for Each RIASEC Dimension 

Model 
Average Cross-Validated RMSE for Training Data 

Across Folds   
Average Cross-Validated RMSE for Test Data 

Across Folds 

M   R I A S E C M   R I A S E C 
RM1: Alternate Title SBERT 
Embeddings .633  .624 .660 .606 .578 .707 .621  .738  .765 .731 .672 .652 .873 .736 

RM2: DWA SBERT 
Embeddings .655  .648 .682 .603 .594 .727 .674  .741  .778 .704 .685 .657 .867 .755 

RM3: IWA SBERT 
Embeddings .671  .678 .676 .604 .588 .784 .693  .746  .783 .709 .675 .655 .882 .772 

Ensemble: AT, DWA, and 
IWA residual predictions .572  .557 .599 .545 .532 .615 .583  .763  .779 .764 .707 .665 .896 .763 

Note. M = Average cross-validated RMSE across RIASEC dimensions. 
 

Table 6.7. Cross-Validated Multiple R Results for Residual Models for Each RIASEC Dimension 

Model 
Average Cross-Validated RMSE for Training Data 

Across Folds   
Average Cross-Validated RMSE for Test Data 

Across Folds 

M   R I A S E C M   R I A S E C 
RM1: Alternate Title SBERT 
Embeddings .67  .74 .61 .61 .67 .71 .69  .42  .48 .28 .39 .50 .38 .47 

RM2: DWA SBERT Embeddings .61  .70 .50 .58 .61 .65 .60  .42  .47 .39 .37 .48 .38 .44 

RM3: IWA SBERT Embeddings .59  .67 .51 .59 .63 .57 .57  .41  .45 .39 .38 .48 .34 .39 

Ensemble: AT, DWA, and IWA 
residual predictions .70  .77 .63 .66 .69 .74 .70  .42  .50 .32 .37 .50 .41 .45 

Note. M = Average cross-validated R across RIASEC dimensions. 
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Upon review of the results in Tables 6.6 and 6.7, we decided to move forward with the residual 
prediction model based on the alternative title SBERT embeddings (Residual Model 1). This 
decision was based on both prediction and practical considerations. From a practical 
perspective, neither DWAs nor IWAs are always immediately available for a new occupation 
when it is added to O*NET, but alternative titles are. In addition, ATs are the most frequently 
updated datatype within the O*NET System, potentially serving as an early indicator of change 
within occupations. From a prediction perspective, the cross-validity of the AT-based residual 
model was not appreciably different from the others. As such, there was a preference to move 
forward with the AT-based residual model. 

Evaluation of Final RIASEC Predictions: Ensemble 1 + Residual Model 1 

Based on the results above, we formed a final prediction for each RIASEC dimension (for each 
occupation) by summing the Ensemble 1 prediction with the AT-residual model prediction. The 
1–7 RIASEC rating scale bounds were then applied to that sum to form a final prediction for 
each RIASEC dimension (for each occupation). Tables 6.8 and 6.9 show RMSE and multiple R 
statistics for final RIASEC predicted values, and Table 6.10 compares the final model 
performance relative to existing benchmarks. 

As shown in Table 6.9, the average test data holdout sample correlations between expert 
ratings and final additive predictions were in the low-.9s for Realistic, Investigative, Artistic, and 
Social interests across models. The average holdout sample correlations were slightly lower for 
Enterprising interests (.87–.88) and considerably lower for Conventional interests (.75–.77). This 
trend for Conventional interests is consistent with the trends we identified in Step 2, and the 
results reported by Putka et al. (2023) for their BoW prediction models, and consistent with the 
lower reliability of Conventional ratings relative to ratings for RIASEC dimensions. Overall, the 
prediction results were very strong and mirrored the reliability of ratings obtained from trained 
expert raters (see Table 6.10). 
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Table 6.8. Cross-Validated RMSE Results for Ensemble 1 + Residual Prediction Models 

Model 
Average Cross-Validated RMSE for Training Data 

Across Folds   
Average Cross-Validated RMSE for Test Data 

Across Folds 

M   R I A S E C M   R I A S E C 

Ensemble 1 .882  .859 1.049 .722 .771 .903 .987  .896  .845 1.027 .700 .829 .954 1.017 

Ensemble 1 + RM1 
(Alternate Title)  .618  .613 .666 .568 .554 .668 .640  .718  .743 .731 .629 .622 .833 .747 

Ensemble 1 + RM2 (DWA) .639  .623 .692 .561 .571 .699 .687  .718  .741 .713 .631 .632 .830 .760 

Ensemble 1 + RM3 (IWA)* .656  .652 .690 .567 .567 .752 .705  .726  .749 .720 .628 .632 .847 .778 

Ensemble 1 + AT, DWA, 
and IWA Residual 
Ensemble 

.576  .567 .636 .527 .536 .586 .603  .744  .756 .772 .662 .652 .850 .772 

Note. M = Average cross-validated RMSE across RIASEC dimensions. Results for Ensemble 1 alone are provided as a benchmark for comparison. 
 

Table 6.9. Cross-Validated Multiple R Results for Ensemble 1 + Residual Prediction Models 

Model 
Average Cross-Validated R for Training Data 

Across Folds   
Average Cross-Validated R for Test Data 

Across Folds 

M   R I A S E C M   R I A S E C 

Ensemble 1 .86  .91 .84 .86 .93 .87 .76  .86  .92 .86 .88 .91 .87 .75 

Ensemble 1 + RM1 (Alternate Title)  .91  .95 .93 .92 .94 .92 .83  .89  .92 .92 .91 .93 .88 .77 

Ensemble 1 + RM2 (DWA) .91  .94 .93 .93 .94 .91 .80  .88  .92 .92 .91 .93 .88 .76 

Ensemble 1 + RM3 (IWA)* .90  .94 .93 .92 .94 .90 .79  .88  .92 .92 .91 .93 .87 .75 

Ensemble 1 + AT, DWA, and IWA 
Residual Ensemble .93  .95 .94 .93 .95 .94 .85  .88  .92 .91 .90 .92 .87 .75 

Note. M = Average cross-validated R across RIASEC dimensions. Results for Ensemble 1 alone are provided as a benchmark for comparison. 
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Table 6.10. Comparison of Final RIASEC Models’ Performance to Existing Benchmarks 

Benchmark/Model M   R I A S E C 

Single Rater Reliability ICC(C,1) .74   .82 .78 .83 .77 .77 .49 

Interrater Reliability ICC(C,3) .89  .93 .91 .94 .91 .91 .74 

Putka et al. (2023) Model Cross-Validated R .84  .90 .83 .83 .92 .85 .73 
Final Predictions (Ensemble 1 + Residual Model 1) 
Average Cross-Validated R for Test Data Across 
Folds 

.89  .92 .92 .91 .93 .88 .77 

Note. M = Average across RIASEC dimensions. ICC(C,1) and ICC(C,3) values are reliability estimates for expert 
raters in the Step 5 data collection originally reported in Table 5.3. 
 

Additional Evaluations for Final RIASEC Prediction Models 

After finalizing our prediction models for each RIASEC dimension and generating predictions 
based on those models for each of the 269 O*NET-SOCs in the analysis dataset, we conducted 
follow-up analyses to further evaluate the quality of the predictions. Specifically, we evaluated: 

• how well the predicted RIASEC profiles corresponded to the expert rating profiles,  

• how well the prediction-implied high-point codes (HPC) corresponded to the expert 
rating high-point codes,  

• patterns of convergence and discrimination among predicted, expert, and analyst 
RIASEC ratings through a multitrait-multimethod (MTMM) correlation lens,  

• the structural validity of the predictions, and  

• whether our predictions meaningfully varied in their accuracy by job family or job zone 
(i.e., whether the distributions of residuals vary by job family or job zone).  

 
These analyses go a step beyond our cross-validated fit estimates and describe our models’ 
performance with greater nuance.  

For the first two analyses above, we report the results for three different sample types: training, 
testing, and full. The training and testing sample results are based on the same models 
evaluated using the distinct data segments we established earlier. The full sample results are 
based on the full analysis sample (i.e., 269 occupations) after retraining the residual models 
using all available cases; these results should be interpreted like the training sample results, as 
the data used to compute predictions were the same data used to train the models. For the 
MTMM correlation analyses, we report results based on the stacked set of predictions for the 
test set holdout samples (i.e., predictions used for each occupation were based on training 
samples that did not include that occupation) as well as the full sample. For the structural 
validity analyses, we applied our prediction models to the full set of 923 data-level occupations 
in O*NET 27.3 and contrasted the results of those analyses to the structural validity of the 
O*NET 27.3 Database’s published RIASEC ratings. Lastly, the residual analyses we report are 
based solely on the full analysis sample. 
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RIASEC Profiles 

Table 6.11 summarizes the results of our comparisons between O*NET-SOCs’ expert-based 
RIASEC profiles and predicted RIASEC profiles. These results show the predicted profiles show 
good recovery of expert-based RIASEC profiles, including in the testing samples where 
predictions were made independent of the data used to train the models.  

Table 6.11. Distribution of Within-Occupation RIASEC Profile Correlations and ICCs 

Dimension 
Training Testing Full 

r ICC(C,1) ICC(A,1) r ICC(C,1) ICC(A,1) r ICC(C,1) ICC(A,1) 

N 215.2 215.2 215.2 53.8 53.8 53.8 269 269 269 

Mean .94 .93 .93 .92 .91 .91 .94 .93 .93 

SD .06 .07 .07 .09 .10 .09 .07 .08 .08 

Min .46 .41 .44 .53 .45 .46 .26 .25 .28 

5th %ile .85 .82 .83 .78 .75 .77 .84 .81 .82 

10th %ile .89 .86 .87 .84 .81 .82 .87 .85 .86 

20th %ile .92 .91 .90 .88 .86 .87 .91 .90 .90 

30th %ile .94 .92 .93 .91 .90 .90 .93 .92 .92 

40th %ile .95 .94 .94 .93 .92 .92 .95 .94 .94 

Median .96 .95 .95 .95 .93 .93 .96 .95 .95 

60th %ile .97 .96 .96 .96 .95 .94 .97 .96 .96 

70th %ile .98 .97 .97 .97 .96 .96 .98 .97 .97 

80th %ile .98 .98 .98 .98 .97 .97 .98 .98 .98 

90th %ile .99 .99 .98 .99 .98 .98 .99 .99 .98 

95th %ile .99 .99 .99 .99 .99 .99 .99 .99 .99 

Max 1.00 1.00 1.00 1.00 1.00 .99 1.00 1.00 1.00 

Note. Results for training and testing samples were averaged over the five outer loops of the nested k-fold design, 
which is why the sample sizes for those samples include decimals. 
 

High-Point Codes 

The results of our HPC analyses based on predicted ratings are summarized in Table 6.12. As 
in Step 2, we found high rates of agreement between expert-based and predicted HPCs, 
especially for the first high point and for matches in the first two to three positions when the 
codes were allowed to appear in any order. A notable difference in these analyses is that we 
detected overlap in all three HPCs in any order of appearance at higher rates than we detected 
overlap in the first two HPCs in any order of appearance. 
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Table 6.12. Agreement on High-Point Codes 
High-Point Code Comparison 
(Predicted vs. Expert) Training Testing Full 

1st High-Point 82.8 79.2 82.5 

2nd High-Point 52.4 47.5 61.3 

3rd High-Point 43.8 39.3 52.4 

1st Two High-Points (In Order) 51.0 44.5 60.2 

1st Two High-Points (Any Order) 57.8 50.1 68.0 

All Three High-Points (In Order) 26.3 24.0 39.4 

All Three High-Points (Any Order) 65.6 60.4 69.5 

1st High-Point for Predictions Among Top 2 Experts 95.7 93.3 97.0 

1st High-Point for Experts Among Top 2 for Predictions 95.6 92.9 96.7 

1st High-Point for Predictions Among Top 3 for Experts 97.7 96.6 98.9 

1st High-Point for Experts Among Top 3 for Predictions 98.1 96.3 99.3 

Note. Results for training and testing samples were averaged over the five outer loops of the nested k-fold design. 
 

Convergence of Predicted Ratings with Analysts and Experts 

We examined predicted, analyst, and expert RIASEC ratings through a multitrait-multimethod 
(MTMM) correlation lens to evaluate patterns of convergence and discrimination among ratings. 
The purpose of doing so was to establish convergent and discriminant validity (Campbell & 
Fiske, 1959). Tables 6.13 and 6.14 provide MTMM correlations based on (a) the stacked set of 
predictions for the test set holdout samples (Table 6.13), as well as (b) predictions based on the 
full sample. The results in Table 6.13 avoid capitalizing on chance, as the predictions for each 
occupation used to calculate the MTMM correlations were based on training samples that did 
not include the given occupation. 

Convergent validity for predicted RIASEC ratings is indicated by high correlation among the 
same RIASEC dimension based on predictions, analysts, and experts (i.e., monotrait-
heteromethod correlations, highlighted in yellow in Tables 6.13 and 6.14). Focusing on results in 
Table 6.13 to avoid capitalizing on chance, we see strong evidence of convergence between 
predictions and analyst ratings and predictions and expert ratings. The average monotrait-
heteromethod correlation among predicted and analyst ratings was. 82, whereas among 
predicted and expert ratings it was .88. Predicted-expert and predicted-analyst monotrait-
heteromethod correlations for RIASEC dimensions all exceed .80 except for Conventional 
interests (predicted-expert r = .76, predicted-analyst r = .67). Note that when interpreting the 
predicted-expert and predicted-analyst correlation for Conventional interests, it is important to 
remember that this dimension was the least reliably measured among both experts and analysts 
(recall Table 5.3). When we correct these correlations for unreliability in expert and analyst 
ratings using the ICC(C,3) (expert) and ICC(C,6) (analyst) values for Conventional interests in 
Table 5.3, they increase to corrected values of .75 (predicted-analyst), and .88 (predicted-
expert).  

.



 

Using Machine Learning to Develop Occupational Interest Profiles                                     57 

Table 6.13. Multitrait-Multimethod Correlations for RIASEC Dimensions by Rating Source: Stacked Predictions for Test Set 
Holdouts 

    Analyst Expert Predicted 
    R I A S E C R I A S E C R I A S E C 

Analyst 

R 1.00                  

I -.26 1.00                 

A -.04 -.39 1.00                

S -.49 -.02 .16 1.00               

E -.35 -.26 .00 -.02 1.00              

C -.49 .31 -.33 -.12 .31 1.00             

Expert 

R .84 -.06 -.09 -.35 -.44 -.47 1.00            

I -.37 .81 -.19 .04 -.10 .44 -.17 1.00           

A -.18 -.25 .85 .14 .12 -.20 -.24 -.03 1.00          

S -.43 .08 .14 .85 -.09 -.06 -.36 .16 .13 1.00         

E -.35 -.24 .02 .18 .85 .19 -.45 -.14 .10 .07 1.00        

C -.26 .20 -.34 -.29 .12 .61 -.25 .14 -.32 -.33 .00 1.00       

Predicted 

R .84 -.07 -.11 -.38 -.46 -.48 .92 -.19 -.24 -.38 -.47 -.21 1.00      

I -.36 .83 -.21 -.01 -.15 .44 -.16 .91 -.07 .14 -.18 .17 -.17 1.00     

A -.19 -.27 .85 .16 .10 -.20 -.25 -.01 .90 .17 .09 -.33 -.28 -.03 1.00    

S -.48 .11 .10 .86 -.09 -.08 -.40 .15 .10 .92 .09 -.30 -.43 .14 .15 1.00   

E -.36 -.27 .02 .17 .85 .24 -.46 -.18 .09 .07 .87 .05 -.50 -.25 .09 .09 1.00  

C -.31 .12 -.40 -.30 .24 .67 -.31 .06 -.36 -.37 .09 .76 -.31 .08 -.41 -.36 .14 1.00 

Note. N = 269. Monotrait-heteromethod correlations are highlighted in yellow. Heterotrait-monomethod correlations are highlighted in blue. Heterotrait-
heteromethod correlations are highlighted in green. 
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Table 6.14. Multitrait-Multimethod Correlations for RIASEC Dimensions by Rating Source: Predictions for Full Sample 
    Analyst Expert Predicted 
    R I A S E C R I A S E C R I A S E C 

Analyst 

R 1.00                  

I -.26 1.00                 

A -.04 -.39 1.00                

S -.49 -.02 .16 1.00               

E -.35 -.26 .00 -.02 1.00              

C -.49 .31 -.33 -.12 .31 1.00             

Expert 

R .84 -.06 -.09 -.35 -.44 -.47 1.00            

I -.37 .81 -.19 .04 -.10 .44 -.17 1.00           

A -.18 -.25 .85 .14 .12 -.20 -.24 -.03 1.00          

S -.43 .08 .14 .85 -.09 -.06 -.36 .16 .13 1.00         

E -.35 -.24 .02 .18 .85 .19 -.45 -.14 .10 .07 1.00        

C -.26 .20 -.34 -.29 .12 .61 -.25 .14 -.32 -.33 .00 1.00       

Predicted 

R .85 -.06 -.11 -.37 -.47 -.48 .94 -.18 -.25 -.37 -.48 -.22 1.00      

I -.36 .83 -.21 .00 -.15 .44 -.16 .93 -.06 .14 -.18 .17 -.17 1.00     

A -.20 -.27 .86 .17 .11 -.20 -.25 -.01 .92 .18 .09 -.34 -.27 -.03 1.00    

S -.48 .11 .11 .86 -.09 -.08 -.40 .16 .11 .94 .09 -.30 -.43 .14 .15 1.00   

E -.36 -.28 .02 .17 .86 .23 -.47 -.18 .09 .06 .92 .04 -.50 -.24 .09 .08 1.00  

C -.31 .13 -.40 -.32 .22 .69 -.31 .07 -.37 -.37 .07 .82 -.31 .09 -.42 -.36 .13 1.00 

Note. N = 269. Monotrait-heteromethod correlations are highlighted in yellow. Heterotrait-monomethod correlations are highlighted in blue. Heterotrait-
heteromethod correlations are highlighted in green. 
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Discriminant validity and freedom from “common method” variance are indicated by relatively 
low correlations among different RIASEC dimensions that had a rating source in common (i.e., 
heterotrait-monomethod correlations, highlighted in blue in Tables 6.13 and 6.14) and that do 
not clearly exceed the correlations among different RIASEC dimensions evaluated by different 
sources (i.e., heterotrait-heteromethod correlations, highlighted in green in Tables 6.13 and 
6.15). Again, focusing on the results in Table 6.13, we see a pattern of evidence for discriminant 
validity and little evidence of common method variance. Specifically, the average heterotrait-
monomethod correlation among predicted ratings was: -.14. Among analyst ratings, it was -.13, 
and among expert ratings, it was -.11. In comparison, the average heterotrait-heteromethod 
correlation (across all sources) was -.11. 

Structural Validity 

Several analyses were conducted to examine the structural validity of the new predicted 
RIASEC ratings. For comparison purposes, we also examined the structural validity of the 
RIASEC ratings published in the O*NET 27.3 database. The structural validity tests are based 
on Holland’s (1997) hexagonal model (also called a circular-order model). A randomization test 
of hypothesized order (Rounds et al., 1992; Tracey, 1997) was conducted on the correlation 
matrix of the predicted and published ratings. A spatial analysis using multidimensional scaling 
(MDS) was conducted to display the inter-relations among the RIASEC ratings. The MDS 
analyses were conducted using the smacof R package (Version 2.1-5; Mair et al., 2022). 
 
Table 6.15 displays the RIASEC intercorrelations for new predicted ratings (n = 923 
occupations) and published O*NET 27.3 ratings (n = 874 occupations). Because of the circular 
order of Holland’s RIASEC model, it is expected that the correlations decrease as one scale 
moves farther away from other RIASEC scales around a circular structure. For example, 
Realistic should be more highly correlated with Investigative compared to Artistic. Overall, the 
circular order correlation pattern holds for the new predicted ratings and published O*NET 27.3 
ratings. 
 
Table 6.15. RIASEC Intercorrelations based on New Predicted RIASEC Ratings and 
Published O*NET 27.3 RIASEC Ratings 

RIASEC Correlations based on New Predicted 
Ratings (n = 923 occupations) 

 RIASEC Correlations based on Published 
O*NET 27.3 Ratings (n = 874 occupations) 

 R I A S E C   R I A S E C 
R 1.00 -.15 -.33 -.59 -.69 -.32  R 1.00 -.07 -.39 -.58 -.56 -.13 
I -.15 1.00 .12 .23 -.16 -.07  I -.07 1.00 .20 .07 -.30 -.17 
A -.33 .12 1.00 .32 .09 -.47  A -.39 .20 1.00 .32 .02 -.41 
S -.59 .23 .32 1.00 .27 -.26  S -.58 .07 .32 1.00 .19 -.24 
E -.69 -.16 .09 .27 1.00 .30  E -.56 -.30 .02 .19 1.00 .27 
C -.32 -.07 -.47 -.26 .30 1.00   C -.13 -.17 -.41 -.24 .27 1.00 

Note. Correlations are shaded along a green-red color gradient to facilitate interpretation (higher values are shaded 
green, lower values are shaded red). 
 
Results from the randomization test are twofold. First, the test evaluates RIASEC-ordered 
correlations to determine whether they are random given the RIASEC circular order structure. 
Second, the correspondence index (CI) is reported. The CI is a normalized descriptive statistic 
indicating the degree to which the 72 ordered predictions implied by the RIASEC circular order 
structure (e.g., Realistic is more highly correlated with Investigative than Artistic) are met. The 



 

Using Machine Learning to Develop Occupational Interest Profiles 60 

CI varies from -1 to 1, with positive values indicating more of the 72 predictions are met and 0 
indicating chance agreement or disagreement. For both data sets, the random order hypothesis 
was rejected. The CI for the predicted ratings was .61 (p < .01), and for the published O*NET 
27.3 ratings it was .78 (p < .01). Both CI values indicate that the RIASEC correlations fit 
Holland’s model as well as the U.S. benchmark sample (CI = .70; Rounds & Tracey, 1996), the 
Interest Profiler Short Form CI of .69, and the Paper and Pencil form CI of .61 (Rounds et al., 
2021). 
 
Figure 6.1 plots MDS and constrained solutions for the new predicted ratings and published 
O*NET 27.3 ratings. A two-dimensional solution fits the data well. MDS solutions for both the 
new predicted and published ratings (plots on the left-hand side of Figure 6.1) show the 
distance between Realistic interests and Investigative and Conventional interests is greater than 
would be expected given a circular structure, which is a typical finding in the RIASEC structural 
literature (Rounds & Day, 1999). Comparing the predicted and published rating MDS solutions 
shows that the major difference between them is that Investigative interests for the predicted 
ratings are drawn closer to the center of the configuration. The circular structure of the RIASEC 
ratings is further supported by the constrained (circular MDS) scaling results (plots on the right 
side of Figure 6.1). Notably, both datasets allowed for the placement of interest types on a 
circular configuration with good stress values for the new predicted ratings (stress = .085) and 
published O*NET 27.3 ratings (stress = .004). 
 
Figure 6.1. Multidimensional Scaling and Constrained (Circular MDS) Solution Plots for 
Predicted Ratings and Published O*NET 27.3 Ratings 
 

 
Note. R,1 = Realistic, I,2 = Investigative, A,3 = Artistic, S,4 = Social, E,5 = Enterprising, C,6 = Conventional. 
 



 

Using Machine Learning to Develop Occupational Interest Profiles 61 

Residual Analyses 

We computed residuals (final predicted ratings minus expert ratings) for each RIASEC 
dimension for each of the 269 occupations in our analysis sample, and we examined the 
distributions of these residuals across O*NET job families and job zones. The purpose of these 
analyses was to determine whether the quality of predictions afforded by the RIASEC prediction 
models varied meaningfully by job family or job zone. 

To evaluate the extent to which variation in residuals was attributable to job family or job zone-
level differences as opposed to occupation-level differences, we decomposed the variance in 
residuals using two pairs of simple random effects models. The first pair of models treated 
occupations as nested within job families and decomposed variance in raw residuals and 
absolute differences between expert and predicted ratings (i.e., the absolute value of the raw 
residual) into job family and occupation components. The second pair of models treated 
occupations as nested within job zones and decomposed variance in raw residuals and 
absolute differences between expert and predicted ratings into job zone and occupation 
components. The results of these analyses are presented in Tables 6.16 and 6.17. 

Table 6.16. Percentage of Variance in Prediction Residuals Attributable to Job Family vs. 
Occupation 

Dimension 
Raw Residual  Absolute Residual 

% Job Family % Occupation   % Job Family % Occupation 

Realistic 0.0 100.0  3.7 96.3 
Investigative 4.0 96.0  3.9 96.1 
Artistic 10.3 89.7  19.8 80.2 
Social 4.4 95.6  6.0 94.0 
Enterprising 0.0 100.0  0.3 99.7 
Conventional 16.3 83.7  7.1 92.9 

Note. Cell values reflect percentages of variance in residual and absolute residuals across O*NET-SOCs (n = 269) 
attributable to the given factor (job family or occupation) based on restricted maximum likelihood (REML) variance 
components. 
 
Table 6.17. Percentage of Variance in Prediction Residuals Attributable to Job Zone vs. 
Occupation 

Dimension 
Raw Residual  Absolute Residual 

% Job Zone % Occupation   % Job Zone % Occupation 

Realistic 0.0 100.0  0.8 99.2 
Investigative 0.0 100.0  1.5 98.5 
Artistic 1.2 98.8  2.5 97.5 
Social 0.0 100.0  4.3 95.7 
Enterprising 2.8 97.2  0.0 100.0 
Conventional 2.5 97.5  1.2 98.8 

Note. Cell values reflect percentages of variance in residual and absolute residuals across O*NET-SOCs (n = 269) 
attributable to the given factor (job zone or occupation) based on restricted maximum likelihood (REML) variance 
components. 
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Results presented in Tables 6.16 and 6.17 suggest that the quality of prediction for Realistic, 
Investigative, Social, and Enterprising interests did not appear to vary much across job families 
or job zones, as these factors accounted for a relatively low percentage (less than 7%) of 
variance in raw residuals and absolute residuals across O*NET-SOCs. For Artistic and 
Conventional interests, the quality of predictions did not appear to vary much across job zones, 
as it accounted for no more than 2.5% of the variance in raw residuals and absolute residuals 
across O*NET-SOCs. However, the quality of predictions did appear to vary more notably for 
Artistic and Conventional interests across job families. Specifically, job family accounted for 
10.3% of the variance in raw residuals for Artistic (19.8% of the variance in absolute residuals) 
and 16.3% of the variance in raw residuals for Conventional (7.1% of the variance in absolute 
residuals).  

To better understand the nature of these differences Appendix F provides means and standard 
deviations of raw and absolute residuals by job family (Table F.1) and job zone (Table F.2). 
Focusing on the job family results in Table F.1 and F.2 (as that is where the more meaningful 
differences occurred for Artistic and Conventional interests) and those job families that are 
represented by at least five occupations, we observed that our final prediction model for Artistic 
interests tended to underpredict how descriptive Artistic interests were for Arts, Design, 
Entertainment, Sports and Media occupations (n = 19) by an average of .62 rating scale units 
relative to experts, and tended to overpredict how descriptive Artistic interests were for 
Production occupations (n = 11) by an average of .50 rating scale units relative to experts (see 
Table F.1).16 Furthermore, we observed that our final prediction model for Conventional 
interests tended to overpredict how descriptive Conventional interests were for Food 
Preparation and Serving Related occupations (n = 7) and Sales and Related occupations (n = 5) 
by an average of .64 and .74 rating scale units, respectively. We caution the reader against 
overinterpreting the findings summarized above, in that the residual summaries for job families 
presented in Tables F1 and F.2 are based on relatively small numbers of occupations per job 
family. Given the strength of the findings presented for our final predictions in the previous 
sections, the totality of evidence suggests our prediction models perform well in terms of their 
alignment with both expert and analyst ratings. We, however, suggest the Center use the 
residuals summaries in Appendix F to perhaps give closer scrutiny to occupations from families 
with larger residuals for a given RIASEC dimension when these models are used to update 
ratings in future versions of O*NET. 

  

 
16 Note the choice of five occupations here as a minimum is somewhat arbitrary and chosen simply to facilitate 
discussion of pattern of findings in Tables F.1 and F.2. 
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Step 7: Finalizing OIPs and High-Point Codes for O*NET 28.1 

Upon conclusion of Step 6, we applied our final prediction model for each RIASEC dimension 
(i.e., Ensemble 1 + Residual Model 1) to the 923 data-level occupations in O*NET 27.3 (i.e., the 
O*NET database that was most current as of this step in the research effort) to generate 
RIASEC predictions for each occupation. Based on ratings, we then assigned up to three high-
point codes for each occupation using the three steps outlined earlier under Step 3. 

With these ratings and high-point codes in place, we constructed a file consisting of (a) the 
aforementioned predicted ratings and high-point codes for all 923 occupations, (b) final expert 
ratings and high-point codes for the subset of 269 occupations that had them, and (c) published 
O*NET 27.3 database RIASEC ratings and 874 occupations that had high-point codes. The 
purpose of constructing this file was to facilitate a final review of predicted RIASEC ratings and 
high-point codes for the occupations. Dr Round adopted the following three steps for purposes 
of review: 

• Step 1. Identified occupations that had RIASEC profile correlations less than .80 for 
predicted and expert ratings or between predicted and published ratings (as of O*NET 
27.3). The rationale behind this step was that Holland’s theory is grounded in the 
concept of person-environment fit. As such, profile correlations serve as measures of fit, 
congruence, and correspondence. Profile correlations are used to identify occupations 
(OIPs) that fit individual RIASEC interests (Gregory & Lewis, 2016). Differences between 
profile correlations generated by predicted and expert ratings can result in different 
occupations that match an individual’s interests.  

• Step 2. For occupations identified in Step 1 (i.e., profile correlations less than .80), high-
point RIASEC codes were examined more closely. First, Dr. Rounds identified the 
occupations that did not have matching RIASEC dimensions in the first position of the 
high-point codes based on predicted and expert ratings (and predicted and published 
ratings). For occupations that did not meet this first position match criterion, Dr. Rounds 
then examined whether the RIASEC dimension in the first or second position of the high-
point codes matched based on predicted and expert ratings (and predicted and 
published ratings). The rationale behind this step is that many methods of fitting 
individual RIASEC interests to occupations have used one or two high-point codes. 
Clients and practitioners can use the RIASEC high-point codes to identify occupations 
that fit well.  

• Step 3. The three-point RIASEC codes for occupations flagged via the steps above were 
then carefully examined by Dr. Rounds.  

Results of Review 

Predicted vs. Expert Ratings 

Of the 269 occupations that had both predicted and expert ratings, Dr. Rounds identified 13 
occupations that fell below the .80 RIASEC profile correlation threshold, none of which had 
matching RIASEC dimensions in the first high-point code position based on predicted and 
expert ratings. Nevertheless, all these occupations did have matching first or second position 
high-point codes based on predicted and expert ratings (after breaking ties on the expert side). 
Further review of these occupations supported the use of the predicted ratings and high-point 
codes for them. 
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Predicted vs. Published Ratings 

Of the 874 occupations that had both predicted and published ratings, Dr. Rounds identified 66 
occupations that fell below the .80 RIASEC profile correlation threshold. Of these 66 
occupations, 37 had mismatching RIASEC dimensions in the first high-point code position 
based on predicted and published ratings. Of the aforementioned 37 occupations, only the 
following six did not have matching first or second position high-point codes based on predicted 
and published ratings: 

• 15-1231.00: Computer Network Support 

• 29-2032.00: Diagnostic Medical 

• 33-9091.00: Crossing Guards and Flaggers 

• 39-5012.00: Hair, Hairstylists, and Cosmetologists 

• 39-3093.00: Locker Room, Coatroom, and Dressing Room Attendants 

• 53-2031.00: Flight Attendants 
 
Upon further review of these occupations, it was decided to adopt the predicted ratings and 
high-point codes for the occupations as they appeared consistent with the tasks performed in 
these occupations. 

Summary 

Based on the results of Dr. Rounds’s review, no changes were deemed necessary to the 
predicted ratings or predicted high-point codes. For occupations where differences were found, 
Dr. Rounds leaned towards using the predicted ratings based on further review of the 
occupations. The findings here reinforce the notion that actuarial (statistical) judgments can offer 
more accurate judgments than those clinical judgments made by humans (Dawes et al., 1989; 
Grove & Meehl, 1996). 
 
In sum, based on the process above, we arrived at a final set of RIASEC ratings and high-point 
codes for the 923 data-level O*NET-SOCs based on inputs available in O*NET 27.3. The final 
set of RIASEC ratings and high-point codes produced here is expected to first be published in 
O*NET 28.1 targeted for release in November 2023. 
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Guidance for Updating RIASEC Ratings and High-Point Codes in Future 
Versions of the O*NET Database 

To facilitate the application of our final prediction models to future versions of O*NET database 
as new occupations are added or as existing occupation data changes, we combined our final 
feature generation and prediction model code into a single script that takes an O*NET Database 
folder as its input and produces interest predictions and high-point codes as its output in a 
format that mimics the structure of the Interests table in the O*NET Database. The 
aforementioned O*NET Database folder would include all tables from the future version of the 
O*NET Database that contribute inputs to our final prediction models, namely: 

• Occupation Data 

• Task Statements 

• Alternate Titles 
 
Our suggested updating process is as follows: 

1. Download the aforementioned tables from the latest available version of the O*NET 
database. 

2. Run the aforementioned feature-generation and model prediction code to produce a 
draft updated version of the Interests table. 

3. Run code that creates occupation-level binary variables indicating which, if any, of the 
input files (from the bulleted list above) have changed for each occupation between the 
version of the O*NET database upon which the latest available interest data were 
created and the latest available version of the O*NET database. For example, if the next 
time interest data are updated is for O*NET 29.0, the version of the O*NET database 
upon which the latest available interest data were created would be 27.3 (per Step 7 in 
this report), and the latest available version of the O*NET database would be 29.0. 
These binary variables described here will be added to the file merged file created as 
part of the next step. 

4. Run code that merges the updated version of the Interest table (from #2) and the 
Interest table from the latest available version of the O*NET Database and creates the 
following occupation-level flags to identify those occupations where closer review of 
updated data by a RIASEC expert is most critical: 

a. Occupations where the correlation between RIASEC profile based on the 
updated ratings vs. the latest available ratings is < .80. 

b. Occupations where the first high-point code does not match based on the latest 
available ratings. 

c. Occupations that have no interest ratings or high-point codes in the Interest table 
from the latest available version of the O*NET Database (i.e., new occupations). 

 
The flags above are meant to focus an expert’s review on those occupations where the 
set of updated RIASEC data for an occupation is least aligned with the latest available 
RIASEC data for that occupation. Within the set of occupations flagged above, the 
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expert could limit their review to those occupations where inputs changed between the 
versions of the O*NET database on which the updated and latest available interest data 
are based. The RIASEC expert tasked with providing a final review of updated ratings 
before they go “live” to the operational database would make adjustments to the 
ratings/high-point codes as needed based upon their review (similar to the final review 
conducted as part of Step 7 in the current effort). 

5. Following RIASEC expert review and revision, the final updated Interest table is provided 
to the Center for final review prior to being incorporated into the operational O*NET 
Database. 

Timing of Future Interest Rating and High-Point Code Updates 

Ultimately, the frequency with which the Center adopts the updating process above will come 
down to its priorities and timeliness with which it wishes to address changes that may impact the 
currency of interest data in O*NET. As an example, consider the following two extremes in 
terms of updating frequency: 

• The Center may consider making updates to interest data (OIPs and high-point codes) 
every time information for an occupation that serves as input to the RIASEC prediction 
models changes (i.e., occupation title, description, tasks, alternate titles), or a new 
occupation is introduced into the O*NET Database. The update process above could be 
carried out following the introduction of those new inputs or new occupations, and 
interest data for the occupations in question would be incorporated into a subsequent 
version of the O*NET Database. 

• The Center may consider making updates to interest data database-wide every X years 
(e.g., every two years) for all occupations that had input that changed in that time frame 
or for any new occupations that were introduced in that time frame. The update process 
above could be carried out at a fixed point in time every X years, and interest data for 
the occupations in question would be incorporated into a subsequent version of the 
O*NET Database following that time frame. 

 
The ideal updating solution may depend on how often new occupations are introduced to 
O*NET and how often the inputs into the RIASEC prediction model (i.e., occupation title, 
description, tasks, alternate titles) change for existing occupations. In discussing potential 
updating options for existing occupations with the Center, it was noted among the inputs above, 
most changes would likely be to alternate titles. The occupation title, description, and task 
statement lists historically have been fairly stable, with the most notable changes stemming 
from (a) adjusted core/supplemental task designations, (b) task statements removed from task 
listings, and (c) modified occupation descriptions occurring during an occupational taxonomy 
update. In the future, a new emphasis on identifying emerging tasks may lead to an increased 
frequency in which new task statements are added to listings in between the Interest ratings 
updates.  
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Conclusions and Future Directions  

The present report summarized the successful effort to leverage advances in supervised 
machine learning to populate RIASEC OIPs and high-point codes for 923 data-level O*NET-
SOC occupations. The models developed use readily available information published within the 
O*NET database as input for generating OIPs and high-point codes for current and new 
occupations. As the world of work changes, these models can be applied to future versions of 
the O*NET database to generate and maintain high quality vocational interest information for 
the O*NET System. 

For each of the six RIASEC general interests, we developed models that produced predictions 
that converged well with both expert and O*NET analyst ratings and the level of correlations we 
observed between predicted and expert approached levels of interrater reliability seen among 
expert raters. The developed models will eliminate the need to gather OIPs and high-point 
codes via traditional expert or analyst data collections, helping to ensure updated, accurate 
vocational interests information is available on a timely basis for O*NET customers and 
stakeholders. 

Though our prediction models performed well, we still advise the Center to build in a layer of 
expert review of predicted OIPs and high-point codes when they are generated for new O*NET 
occupations or for occupations where key model inputs have changed. As part of this report, 
we’ve provided a recommended updating and expert review process. 

In terms of future directions, the success of the models evaluated here bodes well for potentially 
extending this work to automate the creation of basic interest profiles for all data-level 
occupations. The Center recently undertook an initiative to add basic interests to the O*NET 
Content Model (see Rounds et al., 2023) but is still in need of a method for efficiently profiling 
occupations on those basic interests. The methods examined here suggest a machine learning 
approach could be a promising avenue to pursue for this purpose. 

  

https://www.onetcenter.org/reports/Voc_Interests.html
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Appendix A: RIASEC Dimension Descriptions from the O*NET Content 
Model 

The RIASEC dimension descriptions presented below are from the O*NET Content Model 
Reference table updated in O*NET 28.0. 

Table A.1. RIASEC Dimension Descriptions from the O*NET Content Model 

Dimension Description 

Realistic 

Work involves designing, building, or repairing of equipment, materials, or 
structures, engaging in physical activity, or working outdoors. Realistic occupations 
are often associated with engineering, mechanics and electronics, construction, 
woodworking, transportation, machine operation, agriculture, animal services, 
physical or manual labor, athletics, or protective services. 

Investigative 

Work involves studying and researching non-living objects, living organisms, 
disease or other forms of impairment, or human behavior. Investigative 
occupations are often associated with physical, life, medical, or social sciences, 
and can be found in the fields of humanities, mathematics/statistics, information 
technology, or health care service. 

Artistic 

Work involves creating original visual artwork, performances, written works, food, 
or music for a variety of media, or applying artistic principles to the design of 
various objects and materials. Artistic occupations are often associated with visual 
arts, applied arts and design, performing arts, music, creative writing, media, or 
culinary art. 

Social 
Work involves helping, teaching, advising, assisting, or providing service to others. 
Social occupations are often associated with social, health care, personal service, 
teaching/education, or religious activities. 

Enterprising 

Work involves managing, negotiating, marketing, or selling, typically in a business 
setting, or leading or advising people in political and legal situations. Enterprising 
occupations are often associated with business initiatives, sales, 
marketing/advertising, finance, management/administration, professional advising, 
public speaking, politics, or law. 

Conventional 

Work involves following procedures and regulations to organize information or 
data, typically in a business setting. Conventional occupations are often associated 
with office work, accounting, mathematics/statistics, information technology, 
finance, or human resources. 

 

  

https://www.onetcenter.org/dictionary/28.0/excel/content_model_reference.html
https://www.onetcenter.org/dictionary/28.0/excel/content_model_reference.html
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Appendix B: 2008-2013 Interest Re-Rating Instructions 

Instructions: This workbook contains four tabs labeled “Rating Instructions”, “Rating Sheet”, 
“Descriptions” and “Task Statements.” The Rating Sheet tab is where you’ll make ratings for 
those occupations-by-RIASEC combination where we need ratings and are sorted by O*NET-
SOC first (ascending) and RIASEC dimension to be re-rated second (ascending). The 
Descriptions tab included descriptions for each occupation where ratings are needed (sorted in 
ascending order of O*NET-SOC). The Task Statements tab includes tasks along with their 
associated importance ratings (sorted in ascending order of O*NET-SOC, then in descending 
order of importance).  

This activity involves reviewing and resolving ratings for occupation-by-RIASEC combinations 
flagged for disagreement – note some occupations will require re-rating on multiple RIASEC 
dimensions. Suggested steps for re-rating: 

1. Print out the Description and Task Statement tabs. Both have been formatted for 
easy printing. 

2. With the Descriptions and Task Statements in hand, open the Rating Sheet and 
provide a new “characteristicness/descriptiveness” rating for the RIASEC 
dimension listed in the column named “RIASEC Dimension to be Re-Rated”. 
Enter your rating in the column named “Dr. Rounds rating”. 

3. To facilitate making your ratings, we’ve provided ratings from the original three 
SMEs who rated the occupation-dimension in question.  

4. When making your ratings please use the following scale: 
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Appendix C: Best Performing Regression Method and Hyperparameter Values by Model and Ensemble 

Table C.1. Best-Performing Machine Learning Methods and Hyperparameter Values for Initial Models 
Model Realistic Investigative Artistic Social Enterprising Conventional 

1 SPLS (K = 3, η = 0.1) SPLS (K = 2, η = 0.0) SPLS (K = 3, η = 0.0) SPLS (K = 3, η = 0.0) SPLS (K = 2, η = 0.0) SPLS (K = 2, η = 0.2) 

2 EN (α = 0.0, λ = 1.9630) EN (α = 0.0, λ = 3.9442) EN (α = 0.0, λ = 1.2328) EN (α = 0.0, λ = 3.5112) EN (α = 0.0, λ = 1.9630) EN (α = 0.0, λ = 3.9442) 

3 EN (α = 0.0, λ = 3.9442) EN (α = 0.0, λ = 3.9442) EN (α = 0.0, λ = 2.2051) EN (α = 0.0, λ = 3.9442) EN (α = 0.0, λ = 1.2328) EN (α = 0.0, λ = 4.4306) 

4 EN (α = 0.0, λ = 2.7826) EN (α = 0.0, λ = 4.9770) EN (α = 0.0, λ = 2.2051) EN (α = 0.0, λ = 3.1257) EN (α = 0.0, λ = 2.7826) SPLS (K = 2, η = 0.2) 

5 EN (α = 0.0, λ = 2.7826) EN (α = 0.0, λ = 4.4306) EN (α = 1.0, λ = 0.0210) SPLS (K = 3, η = 0.4) EN (α = 0.0, λ = 2.4771) EN (α = 0.0, λ = 3.9442) 

6 EN (α = 1.0, λ = 0.0059) EN (α = 0.0, λ = 0.0074) EN (α = 0.1, λ = 0.0210) EN (α = 1.0, λ = 0.0052) EN (α = 0.5, λ = 0.0007) SPLS (K = 2, η = 0.8) 

7 EN (α = 0.6, λ = 0.0023) EN (α = 0.0, λ = 0.0059) EN (α = 0.1, λ = 0.0004) EN (α = 0.0, λ = 0.0013) EN (α = 1.0, λ = 0.0003) EN (α = 1.0, λ = 0.0023) 

8 OLS EN (α = 0.7, λ = 0.0006) EN (α = 1.0, λ = 0.0066) EN (α = 1.0, λ = 0.0005) SPLS (K = 8, η = 0.9) SPLS (K = 10, η = 0.0) 

9 EN (α = 0.0, λ = 0.0029) SPLS (K = 3, η = 0.8) SPLS (K = 5, η = 0.8) EN (α = 0.0, λ = 0.0167) SPLS (K = 5, η = 0.0) EN (α = 0.0, λ = 0.0266) 

10 EN (α = 0.9, λ = 0.0041) EN (α = 0.4, λ = 0.0187) EN (α = 0.8, λ = 0.0037) EN (α = 0.0, λ = 0.0534) EN (α = 0.0, λ = 0.0148) SPLS (K = 9, η = 0.8) 

11 EN (α = 0.1, λ = 0.1072) EN (α = 0.0, λ = 0.2154) EN (α = 0.1, λ = 0.1072) EN (α = 0.4, λ = 0.0534) EN (α = 0.3, λ = 0.0266) EN (α = 0.5, λ = 0.0475) 

12 SPLS (K = 4, η = 0.6) SPLS (K = 5, η = 0.6) EN (α = 0.7, λ = 0.0236) SPLS (K = 5, η = 0.5) EN (α = 0.0, λ = 0.1520) EN (α = 1.0, λ = 0.0148) 

13 SPLS (K = 5, η = 0.6) SPLS (K = 5, η = 0.5) EN (α = 0.2, λ = 0.0534) EN (α = 0.0, λ = 0.1353) EN (α = 0.0, λ = 0.1353) SPLS (K = 5, η = 0.6) 

14 EN (α = 0.0, λ = 0.3430) EN (α = 0.1, λ = 0.1520) EN (α = 0.1, λ = 0.0673) EN (α = 0.0, λ = 0.2154) EN (α = 0.0, λ = 0.2420) SPLS (K = 5, η = 0.7) 
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Table C.2. Best-Performing Machine Learning Methods and Hyperparameter Values for First-Stage Ensemble Models 
Ensemble Realistic Investigative Artistic Social Enterprising Conventional 

1 SPLS (K = 3, η = 0.0) EN (α = 0.0, λ = 0.2719) SPLS (K = 2, η = 0.0) SPLS (K = 2, η = 0.0) EN (α = 0.0, λ = 0.3054) EN (α = 1.0, λ = 0.0955) 

2 EN (α = 0.7, λ = 0.0423) EN (α = 0.0, λ = 0.5462) EN (α = 0.6, λ = 0.0534) SPLS (K = 1, η = 0.0) EN (α = 0.0, λ = 0.4329) SPLS (K = 1, η = 0.0) 

3 EN (α = 0.7, λ = 0.0376) SPLS (K = 1, η = 0.0) EN (α = 0.6, λ = 0.0534) SPLS (K = 1, η = 0.0) SPLS (K = 1, η = 0.0) SPLS (K = 1, η = 0.0) 

4 EN (α = 0.7, λ = 0.0423) EN (α = 0.0, λ = 0.5462) EN (α = 0.6, λ = 0.0534) EN (α = 0.0, λ = 0.3854) EN (α = 0.0, λ = 0.3854) SPLS (K = 1, η = 0.8) 

5 EN (α = 0.7, λ = 0.0423) SPLS (K = 1, η = 0.9) EN (α = 0.6, λ = 0.0534) SPLS (K = 1, η = 0.0) SPLS (K = 1, η = 0.8) SPLS (K = 1, η = 0.0) 

6 EN (α = 0.7, λ = 0.0423) SPLS (K = 1, η = 0.9) EN (α = 0.6, λ = 0.0534) EN (α = 0.0, λ = 0.3854) EN (α = 0.0, λ = 0.4863) SPLS (K = 1, η = 0.0) 

7 EN (α = 0.7, λ = 0.0376) SPLS (K = 1, η = 0.0) EN (α = 0.6, λ = 0.0534) SPLS (K = 1, η = 0.0) EN (α = 0.0, λ = 0.5462) SPLS (K = 1, η = 0.0) 

8 EN (α = 0.7, λ = 0.0423) SPLS (K = 1, η = 0.9) EN (α = 0.6, λ = 0.0534) EN (α = 0.0, λ = 0.3854) EN (α = 0.0, λ = 0.4329) SPLS (K = 1, η = 0.8) 

9 EN (α = 0.7, λ = 0.0423) SPLS (K = 1, η = 0.9) EN (α = 0.6, λ = 0.0534) SPLS (K = 1, η = 0.0) EN (α = 0.0, λ = 0.4863) SPLS (K = 1, η = 0.0) 

10 SPLS (K = 1, η = 0.0) SPLS (K = 1, η = 0.0) SPLS (K = 1, η = 0.8) EN (α = 0.0, λ = 0.3854) EN (α = 0.0, λ = 0.6136) SPLS (K = 1, η = 0.0) 

11 EN (α = 0.0, λ = 0.2154) SPLS (K = 1, η = 0.8) EN (α = 0.0, λ = 0.3054) EN (α = 0.0, λ = 0.4329) EN (α = 0.0, λ = 0.5462) SPLS (K = 1, η = 0.0) 

12 SPLS (K = 1, η = 0.0) SPLS (K = 1, η = 0.0) SPLS (K = 1, η = 0.8) EN (α = 0.0, λ = 0.4863) EN (α = 0.0, λ = 0.6893) SPLS (K = 1, η = 0.0) 

13 EN (α = 0.0, λ = 0.2154) EN (α = 0.0, λ = 0.6893) EN (α = 0.0, λ = 0.3430) EN (α = 0.0, λ = 0.4863) EN (α = 0.0, λ = 0.4863) SPLS (K = 1, η = 0.0) 

14 EN (α = 0.0, λ = 0.3430) EN (α = 0.0, λ = 0.7743) SPLS (K = 1, η = 0.8) EN (α = 0.0, λ = 0.4863) EN (α = 0.0, λ = 0.6136) SPLS (K = 1, η = 0.0) 

15 EN (α = 0.0, λ = 0.2719) EN (α = 0.0, λ = 0.6893) EN (α = 0.0, λ = 0.3430) EN (α = 0.0, λ = 0.4863) EN (α = 0.0, λ = 0.5462) SPLS (K = 1, η = 0.0) 

16 SPLS (K = 1, η = 0.0) SPLS (K = 1, η = 0.0) SPLS (K = 1, η = 0.8) EN (α = 0.0, λ = 0.5462) EN (α = 0.0, λ = 0.6893) SPLS (K = 1, η = 0.0) 

17 EN (α = 0.0, λ = 0.2719) EN (α = 0.0, λ = 0.6893) EN (α = 0.0, λ = 0.3430) EN (α = 0.0, λ = 0.4863) EN (α = 0.0, λ = 0.5462) SPLS (K = 1, η = 0.0) 

18 EN (α = 0.0, λ = 0.3854) EN (α = 0.0, λ = 0.7743) EN (α = 0.0, λ = 0.4329) EN (α = 0.0, λ = 0.5462) EN (α = 0.0, λ = 0.6136) SPLS (K = 1, η = 0.0) 
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Appendix D: SME Interest Rating Materials 

RIASEC Familiarization Exercise Instructions 

I’ll present you with an occupation’s description and tasks. Apply lessons learned during 
construct training to: 

• Identify the top three RIASEC construct categories (i.e., the high-point codes) most 
associated with the occupation. 

• Explain why you chose that RIASEC category. 

 
NOTE: Although you won’t be identifying high-point codes as part of the ratings you’ll be 
making, the purpose of this activity is just to get you more familiar with the RIASEC model.  

Do: 

• Review task statements to understand the actions (verbs) and objects necessary to 
perform the job. 

• Rely on the occupational description and how it relates to work involved under each 
RIASEC category.  

• Focus on the tasks performed. 

• Ask yourself, “How descriptive and characteristic is the given Holland work environment 
of this occupation?” 

 
Don’t: 

• Rely on your personal experience or stereotype of the occupation and tasks performed.  
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Rating Instructions and Rating Sheet 

Instructions: The O*NET 2023 Vocational Interest Data Collection Master Rating Booklet 
contains all information necessary to rate 269 occupations on Realistic, Investigative, Artistic, 
Social, Enterprising, and Conventional (RIASEC) interest categories. 

Contents (tabs) of Workbook: 

Instructions. Includes instructions for making RIASEC ratings.  

Master Ratings. The master ratings tab includes the O*NET occupation code and title. This is 
the worksheet where raters will document their RIASEC ratings (1-7 scale) for each occupation.  

Note, the occupations in each tab are grouped into three sets: (a) the first 10 for use in initial 
training, (b) the next 50 for use in calibration between initial and follow-up training, and (c) the 
remaining 209 occupations for rating post-calibration. Within each set, occupations are sorted 
by O*NET-SOC.  

Steps:  

1. Review the occupational information associated with an occupation before 
providing a rating (provided in a separate Excel file). 

2. Rate the occupation on each RIASEC category. 

a. Do: Review task statements to understand the actions (verbs) and 
objects necessary to perform the job. Rely on the occupational 
description and how it relates to work involved under each RIASEC 
category. Focus on the tasks performed. Ask yourself, “How descriptive 
and characteristic is the given Holland work environment of this 
occupation?” 

b. Don’t: Rely on your personal experience or stereotype of the occupation 
and tasks performed.  

3. Repeat steps 1-2 until all occupations in workbook are rated.  
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Example Interest Rating Sheet 
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Appendix E: Elastic Net Regression Hyperparameter Values by Residual Model 

Table E.1. Elastic Net Regression Hyperparameters by Residual Model 
Residual  

Model Outer Fold Realistic Investigative Artistic Social Enterprising Conventional 

RM1 1 α = 0.0, λ = 3.5112 α = 0.1, λ = 0.8697 α = 0.0, λ = 16.0000 α = 0.1, λ = 0.7743 α = 0.0, λ = 16.0000 α = 0.2, λ = 0.4329 

2 α = 0.0, λ = 3.1257 α = 0.0, λ = 17.0000 α = 0.6, λ = 0.1205 α = 0.0, λ = 13.0000 α = 0.0, λ = 4.4306 α = 0.0, λ = 6.2803 

3 α = 0.0, λ = 6.2803 α = 1.0, λ = 0.0673 α = 1.0, λ = 0.1072 α = 0.0, λ = 16.0000 α = 0.0, λ = 11.0000 α = 0.4, λ = 0.2154 

4 α = 0.0, λ = 4.9770 α = 0.0, λ = 15.0000 α = 0.0, λ = 15.0000 α = 0.0, λ = 12.0000 α = 0.0, λ = 5.5908 α = 0.1, λ = 0.5462 

5 α = 0.0, λ = 7.0548 α = 0.0, λ = 17.0000 α = 1.0, λ = 0.1353 α = 0.0, λ = 13.0000 α = 0.1, λ = 0.9770 α = 0.0, λ = 7.0548 

RM2 1 α = 0.2, λ = 0.2154 α = 1.0, λ = 0.0756 α = 0.0, λ = 35.0000 α = 0.1, λ = 0.3854 α = 0.0, λ = 7.9248 α = 0.0, λ = 34.0000 

2 α = 0.2, λ = 0.1520 α = 0.0, λ = 22.0000 α = 0.0, λ = 7.0548 α = 0.0, λ = 19.0000 α = 0.0, λ = 3.1257 α = 0.3, λ = 0.1707 

3 α = 0.1, λ = 0.3054 α = 0.0, λ = 30.0000 α = 0.0, λ = 7.0548 α = 0.0, λ = 11.0000 α = 0.0, λ = 5.5908 α = 0.6, λ = 0.1353 

4 α = 0.0, λ = 3.9442 α = 0.0, λ = 34.0000 α = 0.1, λ = 0.3854 α = 0.6, λ = 0.1353 α = 0.0, λ = 7.0548 α = 0.0, λ = 24.0000 

5 α = 0.0, λ = 1.9630 α = 0.0, λ = 29.0000 α = 0.0, λ = 7.0548 α = 0.0, λ = 12.0000 α = 1.0, λ = 0.0673 α = 0.0, λ = 21.0000 

RM3 1 α = 0.3, λ = 0.1707 α = 0.0, λ = 36.0000 α = 0.0, λ = 11.0000 α = 0.0, λ = 4.9770 α = 0.1, λ = 0.6136 α = 0.0, λ = 30.0000 

2 α = 0.0, λ = 2.7826 α = 0.5, λ = 0.1205 α = 0.0, λ = 7.9248 α = 0.2, λ = 0.3430 α = 0.1, λ = 0.4329 α = 0.0, λ = 7.0548 

3 α = 0.8, λ = 0.0850 α = 0.0, λ = 25.0000 α = 0.0, λ = 15.0000 α = 0.0, λ = 8.9022 α = 0.0, λ = 17.0000 α = 0.1, λ = 0.5462 

4 α = 0.0, λ = 4.4306 α = 0.0, λ = 50.0000 α = 0.0, λ = 10.0000 α = 0.0, λ = 8.9022 α = 0.1, λ = 0.6893 α = 0.0, λ = 29.0000 

5 α = 0.0, λ = 5.5908 α = 0.0, λ = 31.0000 α = 0.0, λ = 4.9770 α = 0.1, λ = 0.2719 α = 0.1, λ = 1.0975 α = 0.1, λ = 0.7743 
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Appendix F: Final RIASEC Model Residuals by O*NET Job Family and Job Zone 

Table F.1. Raw Residual Summary by Job Family 

Job Family 
  Raw Residual 

  R I A S E C 
n M SD M SD M SD M SD M SD M SD 

Architecture and Engineering 14 .04 .52 .00 .68 .00 .55 -.08 .41 .36 .44 -.04 .37 
Arts, Design, Entertainment, Sports, and Media 19 .09 .62 .07 .64 -.62 .72 .07 .42 -.24 .62 .16 .66 
Building Grounds Cleaning and Maintenance 1 .00   .67   -.33   -.38   .42   .47   
Business and Financial Operations 22 .14 .76 -.14 .90 .13 .35 .16 .42 .44 .71 -.12 .65 
Community and Social Service 2 .23 .02 -.10 .59 .88 .34 .00 .15 .69 .60 -.27 .09 
Computer and Mathematical 20 .18 .61 .29 .74 .14 .56 -.14 .61 .02 .49 -.10 .46 
Construction and Extraction 8 -.12 .15 .40 .53 .16 .25 .25 .19 -.20 .99 .16 .47 
Educational Instruction and Library 22 -.06 .63 -.04 .43 .09 .70 -.27 .41 .05 .56 -.09 .57 
Farming, Fishing, and Forestry 4 -.27 .21 -.05 .80 .11 .33 -.40 1.00 .26 .43 -.05 .76 
Food Preparation and Serving Related 7 .23 .51 .00 .16 -.34 1.15 .14 .74 .28 .64 .64 .75 
Healthcare Practitioners and Technical 36 .09 .59 .27 .72 .10 .37 .08 .78 -.06 .60 -.12 .61 
Healthcare Support 3 .43 1.24 .16 .14 .41 .70 .43 .44 .37 .19 -.56 .58 
Installation, Maintenance, and Repair 6 -.02 .22 .38 .32 .12 .16 -.05 .31 -.15 .42 .13 .77 
Legal 3 .08 .08 .79 .80 -.07 .68 .55 .36 -1.22 .48 -.26 .83 
Life, Physical, and Social Science 18 -.11 .60 -.15 .62 .02 .67 -.17 .61 .02 .72 .14 .51 
Management 21 -.04 .53 .36 .62 .05 .49 -.04 .51 -.27 .63 -.08 .63 
Office and Administrative Support 6 .33 .77 .51 .73 .15 .25 .27 .39 .00 .70 -.25 .63 
Personal Care and Service 13 .09 .51 -.13 .45 .07 .61 -.16 .66 .34 .63 .09 .95 
Production 11 .24 .50 .47 .53 .50 .92 .03 .26 .13 .37 -.15 .72 
Protective Service 12 -.05 .80 .22 .67 .07 .24 .42 .54 .25 .84 -.17 .94 
Sales and Related 5 -.23 .45 -.38 1.29 .35 .20 .41 .47 -1.21 .67 .74 .18 
Transportation and Material Moving 16 .10 1.11 .13 .44 .04 .15 .03 .55 .11 .85 .10 .83 
All O*NET-SOCs in Sample 269 .06 .63 .13 .67 .05 .58 .02 .57 .03 .69 -.01 .66 

Note. n = number of occupations in job family. M = mean raw residual across occupations. SD = standard deviation of raw residuals across occupations. Positive 
mean values indicate that predicted scores are higher than expert scores, and negative mean valued indicate predicted scores are lower than expert scores on 
average. Mean values are shaded along a green-red color gradient to facilitate interpretation (higher values – indicating overprediction – are shaded red, lower 
values – indicating underprediction –are shaded green). 
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Table F.2. Absolute Residual Summary by Job Family 

Job Family 
  Absolute Residual 

  R I A S E C 
n M SD M SD M SD M SD M SD M SD 

Architecture and Engineering 14 .39 .33 .55 .37 .42 .33 .30 .28 .42 .39 .31 .19 
Arts, Design, Entertainment, Sports, and Media 19 .52 .32 .55 .32 .79 .52 .32 .28 .54 .37 .53 .40 
Building Grounds Cleaning and Maintenance 1 .00   .67   .33   .38   .42   .47   
Business and Financial Operations 22 .55 .54 .69 .58 .22 .30 .35 .26 .71 .42 .45 .47 
Community and Social Service 2 .23 .02 .42 .14 .88 .34 .11 .01 .69 .60 .27 .09 
Computer and Mathematical 20 .50 .37 .47 .63 .43 .38 .44 .44 .37 .31 .39 .26 
Construction and Extraction 8 .14 .13 .46 .47 .17 .23 .27 .16 .78 .57 .39 .28 
Educational Instruction and Library 22 .44 .45 .35 .25 .59 .37 .38 .31 .40 .38 .44 .36 
Farming, Fishing, and Forestry 4 .27 .21 .60 .41 .28 .14 .75 .68 .42 .20 .56 .40 
Food Preparation and Serving Related 7 .38 .38 .10 .12 .88 .74 .59 .40 .60 .28 .69 .70 
Healthcare Practitioners and Technical 36 .47 .35 .62 .45 .28 .26 .65 .42 .42 .42 .47 .40 
Healthcare Support 3 .99 .59 .16 .14 .41 .70 .43 .44 .37 .19 .56 .58 
Installation, Maintenance, and Repair 6 .13 .16 .39 .30 .12 .16 .25 .15 .31 .30 .63 .36 
Legal 3 .08 .08 .86 .70 .53 .20 .55 .36 1.22 .48 .55 .58 
Life, Physical, and Social Science 18 .37 .48 .45 .44 .49 .44 .49 .39 .47 .54 .41 .33 
Management 21 .36 .38 .57 .42 .38 .31 .40 .30 .49 .47 .51 .36 
Office and Administrative Support 6 .67 .42 .75 .42 .15 .25 .37 .27 .46 .49 .35 .57 
Personal Care and Service 13 .41 .30 .32 .33 .50 .33 .52 .41 .59 .38 .66 .67 
Production 11 .39 .38 .61 .35 .61 .84 .24 .10 .29 .26 .56 .44 
Protective Service 12 .58 .53 .50 .48 .13 .22 .54 .40 .66 .55 .80 .46 
Sales and Related 5 .32 .38 .92 .88 .35 .20 .55 .21 1.21 .67 .74 .18 
Transportation and Material Moving 16 .79 .76 .34 .29 .08 .14 .41 .36 .63 .56 .60 .55 

All O*NET-SOCs in Sample 269 .46 .44 .51 .45 .40 .42 .44 .36 .52 .45 .50 .42 

Note. n = number of occupations in job family. M = mean absolute residual across occupations. SD = standard deviation of absolute residuals across occupations. 
Mean values are shaded along a green-red color gradient to facilitate interpretation (higher values – indicating larger deviation between predicted and expert 
ratings – are shaded red, lower values – smaller deviation between predicted and expert ratings –are shaded green). 
 
  



 

Using Machine Learning to Develop Updated Occupational Interest Profiles                                                         81 

Table F.3. Raw Residual Summary by Job Zone 

Job Zone (Degree of Preparation Required) 
  Raw Residual 

  R I A S E C 
n M SD M SD M SD M SD M SD M SD 

1 (Little or none) 6 -.15 .15 .29 .38 -.05 .31 -.07 .52 .48 .47 .50 .87 
2 (Some) 53 .10 .81 .23 .49 .17 .49 .06 .56 .13 .79 .18 .75 
3 (Medium) 76 .07 .66 .15 .63 -.06 .62 .07 .68 .05 .66 -.07 .65 
4 (Considerable) 86 .04 .55 .06 .81 .05 .57 .02 .42 .06 .64 -.08 .58 
5 (Extensive) 48 .04 .54 .11 .64 .12 .62 -.08 .61 -.21 .69 -.05 .60 
All O*NET-SOCs in Sample 269 .06 .63 .13 .67 .05 .58 .02 .57 .03 .69 -.01 .66 

Note. n = number of occupations in job zone. M = mean raw residual across occupations. SD = standard deviation of raw residuals across occupations. Positive 
mean values indicate that predicted scores are higher than expert scores, and negative mean valued indicate predicted scores are lower than expert scores on 
average. Mean values are shaded along a green-red color gradient to facilitate interpretation (higher values – indicating overprediction – are shaded red, lower 
values – indicating underprediction –are shaded green). 
 

Table F.4. Absolute Residual Summary by Job Zone 

Job Zone (Degree of Preparation Required) 
  Absolute Residual 

  R I A S E C 
n M SD M SD M SD M SD M SD M SD 

1 (Little or none) 6 .15 .15 .34 .32 .22 .20 .41 .26 .58 .29 .66 .73 
2 (Some) 53 .56 .59 .40 .36 .30 .42 .43 .35 .59 .53 .61 .47 
3 (Medium) 76 .48 .45 .52 .39 .37 .50 .52 .43 .49 .43 .47 .45 
4 (Considerable) 86 .41 .36 .59 .56 .43 .37 .33 .26 .51 .39 .45 .38 
5 (Extensive) 48 .42 .33 .52 .39 .52 .36 .50 .35 .51 .50 .50 .33 
All O*NET-SOCs in Sample 269 .46 .44 .51 .45 .40 .42 .44 .36 .52 .45 .50 .42 

Note. n = number of occupations in job zone. M = mean absolute residual across occupations. SD = standard deviation of absolute residuals across occupations. 
Mean values are shaded along a green-red color gradient to facilitate interpretation (higher values – indicating larger deviation between predicted and expert 
ratings – are shaded red, lower values – smaller deviation between predicted and expert ratings –are shaded green). 
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